Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen

An Erratum to this article was published on 01 February 2001

Abstract

The ribonucleoside analog ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) shows antiviral activity against a variety of RNA viruses and is used in combination with interferon-α to treat hepatitis C virus infection. Here we show in vitro use of ribavirin triphosphate by a model viral RNA polymerase, poliovirus 3Dpol. Ribavirin incorporation is mutagenic, as it templates incorporation of cytidine and uridine with equal efficiency. Ribavirin reduces infectious poliovirus production to as little as 0.00001% in cell culture. The antiviral activity of ribavirin correlates directly with its mutagenic activity. These data indicate that ribavirin forces the virus into `error catastrophe'. Thus, mutagenic ribonucleosides may represent an important class of anti-RNA virus agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RMP incorporation by 3Dpol in vitro.
Figure 2: Molecular modeling of ribavirin.
Figure 3: Analysis of poliovirus translation and replication in the presence of ribavirin.

Similar content being viewed by others

References

  1. Sidwell, R.W. et al. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl- 1,2,4-triazole-3-carboxamide. Science 177, 705–706 (1972).

    Article  CAS  Google Scholar 

  2. Smith, R.A. & Kirkpatrick, W. in Ribavirin, a Broad Spectrum Antiviral Agent Vol. xiii, 237 (Academic, New York, 1980).

    Google Scholar 

  3. De Clercq, E. Antiviral agents: characteristic activity spectrum depending on the molecular target with which they interact. Adv. Virus Res. 42, 1–55 (1993).

    Article  CAS  Google Scholar 

  4. McHutchison, J.G. et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N. Engl. J. Med. 339, 1485–1492 (1998).

    Article  CAS  Google Scholar 

  5. Davis, G.L. et al. Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group. N. Engl. J. Med. 339, 1493–1499 (1998).

    Article  CAS  Google Scholar 

  6. McCormick, J.B. et al. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986).

    Article  CAS  Google Scholar 

  7. Wyde, P.R. Respiratory syncytial virus (RSV) disease and prospects for its control. Antiviral Res. 39, 63–79 (1998).

    Article  CAS  Google Scholar 

  8. Streeter, D.G. et al. Mechanism of action of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc. Natl. Acad. Sci. USA 70, 1174–1178 (1973).

    Article  CAS  Google Scholar 

  9. Smith, R.A., Knight, V. & Smith, J.A.D. in Clinical Applications of Ribavirin Vol. xix, 222 (Academic, New York, 1984).

    Google Scholar 

  10. Gilbert, B.E. & Knight, V. Biochemistry and clinical applications of ribavirin. Antimicrob. Agents Chemother. 30, 201–205 (1986).

    Article  CAS  Google Scholar 

  11. AFHS Drug Information (American Society of Hospital Pharmacists: SilverPlatter International, Bethesda, Maryland, 2000).

  12. Goswami, B.B., Borek, E., Sharma, O.K., Fujitaki, J. & Smith, R.A. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem. Biophys. Res. Commun. 89, 830–836 (1979).

    Article  CAS  Google Scholar 

  13. Eriksson, B. et al. Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob. Agents Chemother. 11, 946–951 (1977).

    Article  CAS  Google Scholar 

  14. Cassidy, L.F. & Patterson, J.L. Mechanism of La Crosse virus inhibition by ribavirin. Antimicrob. Agents Chemother. 33, 2009–2011 (1989).

    Article  CAS  Google Scholar 

  15. Miller, J.P. et al. The relationship between the metabolism of ribavirin and its proposed mechanism of action. Ann. NY Acad. Sci. 284, 211–229 (1977).

    Article  CAS  Google Scholar 

  16. Arnold, J.J. & Cameron, C.E. Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J. Biol. Chem. 275, 5329–5336 (2000).

    Article  CAS  Google Scholar 

  17. Gohara, D.W. et al. Poliovirus RNA-dependent RNA Polymerase (3Dpol): Structural, biochemical, and biological analysis of conserved structural motifs A and B. J. Biol. Chem. 275, 25523–25532 (2000).

    Article  CAS  Google Scholar 

  18. Herold, J. & Andino, R. Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 74, 6394–6400 (2000).

    Article  CAS  Google Scholar 

  19. Andino, R., Rieckhof, G.E., Achacoso, P.L. & Baltimore, D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J. 12, 3587–3598 (1993).

    Article  CAS  Google Scholar 

  20. Maynell, L.A., Kirkegaard, K. & Klymkowsky, M.W. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 66, 1985–1994 (1992).

    CAS  Google Scholar 

  21. Pfister, T. & Wimmer, E. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J. Biol. Chem. 274, 6992–7001 (1999).

    Article  CAS  Google Scholar 

  22. Pincus, S.E., Diamond, D.C., Emini, E.A. & Wimmer, E. Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J. Virol. 57, 638–646 (1986).

    CAS  Google Scholar 

  23. Baltera, R.F., Jr. & Tershak, D.R. Guanidine-resistant mutants of poliovirus have distinct mutations in peptide 2C. J. Virol. 63, 4441–4444 (1989).

    CAS  Google Scholar 

  24. Pringle, C.R. Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluorouracil, 5-azacytidine, and ethyl methane sulfonate. J. Virol. 5, 559–567 (1970).

    CAS  Google Scholar 

  25. Pathak, V.K. & Temin, H.M. 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate. J. Virol. 66, 3093–3100 (1992).

    CAS  Google Scholar 

  26. Holland, J.J., Domingo, E., de la Torre, J.C. & Steinhauer, D.A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990).

    CAS  Google Scholar 

  27. Lee, C.H. et al. Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J. Virol. 71, 3636–3640 (1997).

    CAS  Google Scholar 

  28. Irurzun, A., Perez, L. & Carrasco, L. Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191, 166–175 (1992).

    Article  CAS  Google Scholar 

  29. Domingo, E. & Holland, J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  Google Scholar 

  30. Domingo, E. & Holland, J.J. in The Evolutionary Biology of Viruses Vol. xi (ed. Morse, S.S.) 353 (Raven, New York, 1994).

    Google Scholar 

  31. Domingo, E. Viruses at the Edge of Adaptation. Virology 270, 251–253 (2000).

    Article  CAS  Google Scholar 

  32. Loeb, L.A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl. Acad. Sci. USA 96, 1492–1497 (1999).

    Article  CAS  Google Scholar 

  33. Gohara, D.W. et al. Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli. Prot. Express. Purif. 17, 128–138 (1999).

    Article  CAS  Google Scholar 

  34. Racaniello, V.R. & Baltimore, D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214, 916–919 (1981).

    Article  CAS  Google Scholar 

  35. Dea, P., Schweizer, M.P. & Kreishman, G.P. Nuclear magnetic resonance studies of the solution properties of the antiviral nucleoside, 1-beta-D-ribofuranosyl-1,2,4-triazole-3- carboxamide, the coresponding 5′-phosphate, and related triazole nucleosides. Biochemistry 13, 1862–1867 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Gohara for preparation of RTP molecular models; S. Scaringe for synthesis of ribavirin phosphoramidite; J. Lecomte for structural analysis of RTP; S. Firestine and J. Herold for discussions; J. Frydman and A. Frankel for comments; and G. Reyes for support. This work was supported in part by a National Cancer Institute National Institutes of Health Howard Temin Award CA75118 (to C.E.C.) and National Institute of Allergy and Infectious Diseases National Institutes of Health grants AI45818 (to C.E.C.) and AI40085 (to R.A.). S.C. is a Howard Hughes Medical Institute doctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig E. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crotty, S., Maag, D., Arnold, J. et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6, 1375–1379 (2000). https://doi.org/10.1038/82191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing