Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peripheral group I metabotropic glutamate receptors modulate nociception in mice

Abstract

The metabotropic glutamate receptors (mGluRs) are found throughout the central nervous system, where they modulate neuronal excitability and synaptic transmission. Here we report the presence of phospholipase C-coupled group I mGluRs (mGluR1 and mGluR5) outside the central nervous system on peripheral unmyelinated sensory afferents. Given their localization on predominantly nociceptive afferents, we investigated whether these receptors modulate nociceptive signaling, and found that agonist-induced activation of peripheral group I mGluRs leads to increased sensitivity to noxious heat, a phenomenon termed thermal hyperalgesia. Furthermore, group I mGluR antagonists not only prevent, but also attenuate established formalin-induced pain. Taken together, these results suggest that peripheral mGluRs mediate a component of hyperalgesia and may be therapeutically targeted to prevent and treat inflammatory pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of mGluR5 and mGluR1a on unmyelinated peripheral afferents.
Figure 2: The group I mGluR agonist, RS-DHPG, enhances thermal sensitivity.
Figure 3: DHPG-induced thermal hypersensitivity is attenuated by pretreatment with mGluR5 and mGluR1 antagonists.
Figure 4: APV and MPPG did not reduce DHPG-induced thermal hypersensitivity.
Figure 5: MPEP and CPCCOEt blocked glutamate-induced thermal hypersensitivity.
Figure 6: Pre-treatment with MPEP or CPCCOEt diminished the second phase of the formalin test.
Figure 7: CPCCOEt and MPEP reduced the formalin test second phase when administered after the first phase.

Similar content being viewed by others

References

  1. Carlton, S. M., Hargett, G. L. & Coggeshall, R. E. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci. Lett. 197, 25–28 (1995).

    Article  CAS  Google Scholar 

  2. Coggeshall, R. E. & Carlton, S. M. Ultrastructural analysis of NMDA, AMPA, and kainate receptors on unmyelinated and myelinated axons in the periphery. J. Comp. Neurol. 391, 78–86 (1998).

    Article  CAS  Google Scholar 

  3. Jackson, D. L., Graff, C. B., Richardson, J. D. & Hargreaves, K. M. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur. J. Pharmacol. 284, 321–325 (1995).

    Article  CAS  Google Scholar 

  4. Zhou, S., Bonasera, L. & Carlton, S. M. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport 7, 895–900 (1996).

    Article  CAS  Google Scholar 

  5. Davidson, E. M., Coggeshall, R. E. & Carlton, S. M. Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport 8, 941–946 (1997).

    Article  CAS  Google Scholar 

  6. deGroot, J., Zhou, S. & Carlton, S. M. Peripheral glutamate release in the hindpaw following low and high intensity sciatic stimulation. Neuroreport 11, 497–502 (2000).

    Article  CAS  Google Scholar 

  7. Omote, K., Kawamata, T., Kawamata, M. & Namiki, A. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res. 787, 161–164 (1998).

    Article  CAS  Google Scholar 

  8. McNearney, T., Speegle, D., Lawand, N., Lisse, J. & Westlund, K. N. Excitatory amino acid profiles of synovial fluid from patients with arthritis. J. Rheumatol. 27, 739–745 (2000).

    CAS  PubMed  Google Scholar 

  9. Conn, P. J. & Pin, J.-P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  10. Neugebauer, V., Lucke, T. & Schaible, H. G. Requirement of metabotropic glutamate receptors for the generation of inflammation-evoked hyperexcitability in rat spinal cord neurons. Eur. J. Neurosci. 6, 1179–1186 (1994).

    Article  CAS  Google Scholar 

  11. Neugebauer, V., Chen, P. S. & Willis, W. D. Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J. Neurophysiol. 82, 272–282 (1999).

    Article  CAS  Google Scholar 

  12. Fisher, K. & Coderre, T. J. Hyperalgesia and allodynia induced by intrathecal (RS)-dihydroxyphenylglycine in rats. Neuroreport 9, 1169–1172 (1998).

    Article  CAS  Google Scholar 

  13. Fisher, K. & Coderre, T. J. Comparison of nociceptive effects produced by intrathecal administration of mGluR agonists. Neuroreport 7, 2743–2747 (1996).

    Article  CAS  Google Scholar 

  14. Fisher, K. & Coderre, T. J. The contribution of metabotropic glutamate receptors (mGluRs) to formalin-induced nociception. Pain 68, 255–263 (1996).

    Article  CAS  Google Scholar 

  15. Fisher, K., Fundytus, M. E., Cahill, C. M. & Coderre, T. J. Intrathecal administration of the mGluR compound (S)-4CPG, attenuates hyperalgesia and allodynia associated with sciatic nerve constriction injury in rats. Pain 77, 59–66 (1998).

    Article  CAS  Google Scholar 

  16. Young, M. R. et al. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res. 777, 161–169 (1997).

    Article  CAS  Google Scholar 

  17. Vidnyanszky, Z. et al. Cellular and subcellular localization of the mGluR5a metabotropic glutamate receptor in rat spinal cord. Neuroreport 6, 209–213 (1994).

    Article  CAS  Google Scholar 

  18. Valerio, A., Paterlini, M., Boifava, M., Memo, M. & Spano, P. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Neuroreport 8, 2695–2699 (1997).

    Article  CAS  Google Scholar 

  19. Valerio, A. et al. mGluR5 metabotropic glutamate receptor distribution in rat and human spinal cord: a developmental study. Neurosci. Res. 28, 49–57 (1997).

    Article  CAS  Google Scholar 

  20. Jia, H., Rustioni, A. & Valtschanoff, J. G. Metabotropic glutamate receptors in superficial laminae of the rat dorsal horn. J. Comp. Neurol. 410, 627–642 (1999).

    Article  CAS  Google Scholar 

  21. Crawford, J. H. et al. Mobilisation of intracellular Ca2+ by mGluR5 metabotropic glutamate receptor activation in neonatal rat cultured dorsal root ganglia neurones. Neuropharmacology 39, 621–630 (2000).

    Article  CAS  Google Scholar 

  22. Coggeshall, R. E., Zhou, S. & Carlton, S. M. Opioid receptors on peripheral sensory axons. Brain Res. 764, 126–132 (1997).

    Article  CAS  Google Scholar 

  23. Schoepp, D. D., Goldsworthy, J., Johnson, B. G., Salhoff, C. R. & Baker, S. R. 3,5-dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J. Neurochem. 63, 769–772 (1994).

    Article  CAS  Google Scholar 

  24. Gereau, R. W. & Conn, P. J. Role of specific metabotropic glutamate receptor subtypes in regulating hippocampal CA1 pyramidal cell excitability. J. Neurophysiol. 74, 122–129 (1995).

    Article  CAS  Google Scholar 

  25. Baker, S. R., Goldsworthy, J., Harden, R. C., Salhoff, C. R. & Schoepp, D. D. Enzymatic resolution and pharmacological activity of the enantiomers of 3,5-dihydroxyphenylglycine, a metabotropic glutamate receptor agonist. Bioorg. Med. Chem. Lett. 5, 223–228 (1995).

    Article  CAS  Google Scholar 

  26. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).

    Article  CAS  Google Scholar 

  27. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  28. Annoura, H., Fukunaga, A., Uesugi, M., Tatsuoka, T. & Horikawa, Y. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg. Med. Chem. Lett. 6, 763–766 (1996).

    Article  CAS  Google Scholar 

  29. Clark, B. P., Baker, S. R., Goldsworthy, J., Harris, J. R. & Kingston, A. E. (+)-2-methyl-4-carboxyphenylglycine (LY367385) selectively antagonises metabotropic glutamate mGluR1 receptors. Bioorg. Med. Chem. Lett. 7, 2777–2780 (1997).

    Article  CAS  Google Scholar 

  30. Contractor, A., Gereau, R. W., Green, T. & Heinemann, S. F. Direct effects of metabotropic glutamate receptor compounds on native and recombinant N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci USA 95, 8969–8974 (1998).

    Article  CAS  Google Scholar 

  31. McCall, W. D., Tanner, K. D. & Levine, J. D. Formalin induces biphasic activity in C-fibers in the rat. Neurosci. Lett. 208, 45–48 (1996).

    Article  CAS  Google Scholar 

  32. Puig, S. & Sorkin, L. S. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64, 345–355 (1996).

    Article  CAS  Google Scholar 

  33. Taylor, B. K., Peterson, M. A. & Basbaum, A. I. Persistent cardiovascular and behavioral nociceptive responses to subcutaneous formalin require peripheral nerve input. J. Neurosci. 15, 7575–7584 (1995).

    Article  CAS  Google Scholar 

  34. Coderre, T. J., Vaccarino, A. L. & Melzack, R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res. 535, 155–158 (1990).

    Article  CAS  Google Scholar 

  35. Tjolsen, A., Berge, O. G., Hunskaar, S., Rosland, J. H. & Hole, K. The formalin test: an evaluation of the method. Pain 51, 5–17 (1992).

    Article  CAS  Google Scholar 

  36. Peng, Y. B., Ringkamp, M., Campbell, J. N. & Meyer, R. A. Electrophysiological assessment of the cutaneous arborization of Adelta-fiber nociceptors. J. Neurophysiol. 82, 1164–1177 (1999).

    Article  CAS  Google Scholar 

  37. Carlton, S. M., Zhou, S. & Coggeshall, R. E. Evidence for the interaction of glutamate and NK1 receptors in the periphery. Brain Res. 790, 160–169 (1998).

    Article  CAS  Google Scholar 

  38. Lawand, N. B., McNearney, T. & Westlund, K. N. Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86, 69–74 (2000).

    Article  CAS  Google Scholar 

  39. Walker, K. et al. mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurons mediate inflammatory hyperaglesia. Neuropharmacology 40, 10–19 (2001).

    Article  CAS  Google Scholar 

  40. Hargreaves, K., Dubner, R., Brown, F., Flores, C. & Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88 (1988)

    Article  CAS  Google Scholar 

  41. Abbott, F. V., Franklin, K. B. & Westbrook, R. F. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60, 91–102 (1995).

    Article  CAS  Google Scholar 

  42. Carlton, S. M., Chung, K., Ding, Z. & Coggeshall, R. E. Glutamate receptors on postganglionic sympathetic axons. Neuroscience 83, 601–605 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L.S. Baggett (Rice University, Department of Statistics) for assistance with the statistical analysis and B. Nadin for cell line immunocytochemistry. This work was supported by grants from the National Institutes of Health (MH60230 to R.W.G. and NS11255 and NS27910 to S.M.C.) and the Spinal Cord Research Foundation (R.W.G.). G.B. is a McNair Scholar of the Baylor College of Medicine Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Gereau IV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhave, G., Karim, F., Carlton, S. et al. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4, 417–423 (2001). https://doi.org/10.1038/86075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing