Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A cancer terminator virus eradicates both primary and distant human melanomas

Abstract

The prognosis and response to conventional therapies of malignant melanoma inversely correlate with disease progression. With increasing thickness, melanomas acquire metastatic potential and become inherently resistant to radiotherapy and chemotherapy. These harsh realities mandate the design of improved therapeutic modalities, especially those targeting metastases. To develop an approach to effectively treat this aggressive disease, we constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV produces large quantities of MDA-7/IL-24 protein as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal human immortal melanocytes and human melanoma cells demonstrates cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 CTV into xenografts derived from MeWo human metastatic melanoma cells in athymic nude mice completely eliminated not only primary treated tumors but also distant non-treated tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for treating patients with advanced melanomas with metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer Statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Weinstock MA . Issues in the epidemiology of melanoma. Hematol Oncol Clin North Am 1998; 12: 681–698.

    Article  CAS  PubMed  Google Scholar 

  3. Herlyn M . Human melanoma: development and progression. Cancer Metastasis Rev 1990; 9: 101–112.

    Article  CAS  PubMed  Google Scholar 

  4. Rigel DS, Carucci JA . Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin 2000; 50: 215–236.

    Article  CAS  PubMed  Google Scholar 

  5. Diagnosis and treatment of early melanoma. NIH Consens Statement 1992; 10: 1–26.

  6. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  7. Huang EY, Madireddi MT, Gopalkrishnan RV, Leszczyniecka M, Su ZZ, Lebedeva IV et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene 2001; 20: 7051–7063.

    Article  CAS  PubMed  Google Scholar 

  8. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CSH, Fisher PB . The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA 1996; 93: 9160–9165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Su ZZ, Madireddi MT, Lin JJ, Young CSH, Kitada S, Reed JC et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 1998; 95: 14400–14405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lebedeva IV, Su ZZ, Chang Y, Kitada S, Reed JC, Fisher PB . The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 2002; 21: 708–718.

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K et al. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 2002; 99: 10054–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fisher PB, Sarkar D, Lebedeva IV, Emdad L, Gupta P, Sauane M et al. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): novel gene therapeutic for metastatic melanoma. Toxicol Appl Pharmacol 2007; 224: 300–307.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher PB . Is mda-7/IL-24 a ‘magic bullet’ for cancer? Cancer Res 2005; 65: 10128–10138.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111: 596–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P et al. mda-7/IL-24: exploiting cancer’s Achilles’ heel. Mol Ther 2005; 11: 4–18.

    Article  CAS  PubMed  Google Scholar 

  17. Sarkar D, Lebedeva IV, Gupta P, Emdad L, Dent P, Curiel DT et al. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a ‘magic bullet’ for cancer therapy? Expert Opin Biol Ther 2007; 7: 577–586.

    Article  CAS  PubMed  Google Scholar 

  18. Lebedeva IV, Emdad L, Su ZZ, Gupta P, Sauane M, Sarkar D et al. mda-7/IL-24, novel anticancer cytokine: focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience. Int J Oncol 2007; 31: 985–1007.

    CAS  PubMed  Google Scholar 

  19. Madireddi MT, Su ZZ, Young CSH, Goldstein NI, Fisher PB . Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv Exp Med Biol 2000; 465: 239–261.

    Article  CAS  PubMed  Google Scholar 

  20. Su ZZ, Lebedeva IV, Gopalkrishnan RV, Goldstein NI, Stein CA, Reed JC et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA 2001; 98: 10332–10337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB . Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci USA 2005; 102: 14034–14039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene 2002; 21: 4558–4566.

    Article  CAS  PubMed  Google Scholar 

  23. Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K et al. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res 2003; 63: 5105–5113.

    CAS  PubMed  Google Scholar 

  24. Su ZZ, Lebedeva IV, Sarkar D, Gopalkrishnan RV, Sauane M, Sigmon C et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene 2003; 22: 1164–1180.

    Article  CAS  PubMed  Google Scholar 

  25. Caudell EG, Mumm JB, Poindexter N, Ekmekcioglu S, Mhashilkar AM, Yang XH et al. The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. J Immunol 2002; 168: 6041–6046.

    Article  CAS  PubMed  Google Scholar 

  26. Su ZZ, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P et al. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005; 24: 7552–7566.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther 2003; 2: S23–S37.

    Article  CAS  PubMed  Google Scholar 

  28. Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 2005; 11: 149–159.

    Article  CAS  PubMed  Google Scholar 

  29. Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N et al. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 2005; 11: 160–172.

    Article  CAS  PubMed  Google Scholar 

  30. El-Aneed A . Current strategies in cancer gene therapy. Eur J Pharmacol 2004; 498: 1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Q, Moyana T, Xiang J . Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 2001; 1: 101–122.

    Article  CAS  PubMed  Google Scholar 

  32. Lebedeva IV, Su ZZ, Sarkar D, Fisher PB . Restoring apoptosis as a strategy for cancer gene therapy: focus on p53 and mda-7. Semin Cancer Biol 2003; 13: 169–178.

    Article  CAS  PubMed  Google Scholar 

  33. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  34. Haviv YS, Curiel DT . Conditional gene targeting for cancer gene therapy. Adv Drug Deliv Rev 2001; 53: 135–154.

    Article  CAS  PubMed  Google Scholar 

  35. Haviv YS, Curiel DT . Engineering regulatory elements for conditionally-replicative adeno-viruses. Curr Gene Ther 2003; 3: 357–385.

    Article  CAS  PubMed  Google Scholar 

  36. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT . Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62: 4663–4670.

    CAS  PubMed  Google Scholar 

  37. Banerjee NS, Rivera AA, Wang M, Chow LT, Broker TR, Curiel DT et al. Analyses of melanoma-targeted oncolytic adenoviruses with tyrosinase enhancer/promoter-driven E1A, E4, or both in submerged cells and organotypic cultures. Mol Cancer Ther 2004; 3: 437–449.

    CAS  PubMed  Google Scholar 

  38. Wildner O, Morris JC, Vahanian NN, Ford Jr H, Ramsey WJ, Blaese RM . Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther 1999; 6: 57–62.

    Article  CAS  PubMed  Google Scholar 

  39. Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CSH, Ware J et al. Targeting gene expression selectively in cancer cells using the progression elevated gene-3 promoter. Proc Natl Acad Sci USA 2005; 102: 1059–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarkar D, Su ZZ, Vozhilla N, Park ES, Randolph A, Valerie K et al. Targeted virus replication plus immunotherapy eradicates primary and distant pancreatic tumors in nude mice. Cancer Res 2005; 65: 9056–9063.

    Article  CAS  PubMed  Google Scholar 

  41. Sarkar D, Lebedeva IV, Su ZZ, Park ES, Chatman L, Vozhilla N et al. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res 2007; 67: 5434–5442.

    Article  CAS  PubMed  Google Scholar 

  42. Su ZZ, Shi Y, Fisher PB . Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc Natl Acad Sci USA 1997; 94: 9125–9130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su ZZ, Goldstein NI, Jiang H, Wang MN, Duigou GJ, Young CSH et al. PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis. Proc Natl Acad Sci USA 1999; 96: 15115–15120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su ZZ, Shi Y, Fisher PB . Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulates basal and differential expression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells. Oncogene 2000; 19: 3411–3421.

    Article  CAS  PubMed  Google Scholar 

  45. Su ZZ, Shi Y, Friedman R, Qiao L, McKinstry R, Hinman D et al. PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells. Nucleic Acids Res 2001; 29: 1661–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarkar D, Su ZZ, Fisher PB . Cancer terminator viruses (CTV): unique conditionally replication competent bipartite adenoviruses. In: Hermonat PL (ed). Cancer and Gene Therapy, 2007. Transworld Research Network, 2007; in press.

    Google Scholar 

  47. Sarkar D, Su ZZ, Fisher PB . Unique conditionally replication competent bipartite adenoviruses—cancer terminator viruses: efficacious reagents for cancer gene therapy. Cell Cycle 2006; 5: 1531–1536.

    Article  CAS  PubMed  Google Scholar 

  48. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1: 325–337.

    Article  CAS  PubMed  Google Scholar 

  50. Cascallo M, Capella G, Mazo A, Alemany R . Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res 2003; 63: 5544–5550.

    CAS  PubMed  Google Scholar 

  51. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 2003; 10: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  52. Miyahara R, Banerjee S, Kawano K, Efferson C, Tsuda N, Miyahara Y et al. Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther 2006; 13: 753–761.

    Article  CAS  PubMed  Google Scholar 

  53. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 2006; 66: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present studies were supported in part by NIH Grants P01 CA104177, R01 CA35675 and R01 CA097318, and the Samuel Waxman Cancer Research Foundation (P B F). P B F holds the Thelma Neumeyer Corman Chair in Cancer Research and is a SWCRF Investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Sarkar or P B Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, D., Su, Zz., Park, ES. et al. A cancer terminator virus eradicates both primary and distant human melanomas. Cancer Gene Ther 15, 293–302 (2008). https://doi.org/10.1038/cgt.2008.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.14

Keywords

This article is cited by

Search

Quick links