Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular mechanisms that could contribute to prolonged effectiveness of PDE5 inhibitors to improve erectile function

Abstract

Cyclic guanosine monophosphate (cGMP) in penile vascular smooth muscle cells (VSMC) plays a key role in promoting penile erection. Phosphodiesterase-5 (PDE5) in VSMC breaks down cGMP to counter this effect. Sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis), treatments for erectile dysfunction, inhibit PDE5 action. Many men with erectile dysfunction have improved erectile function after plasma inhibitor concentration falls below therapeutic levels. Maximum effect plus onset and duration of action of inhibitor determines its efficacy. The rate and extent of cellular drug accumulation and efflux of drug from smooth muscle cells plus persistence of drug effects in these cell impact these parameters. We propose possible molecular mechanisms that could account for prolonged action of PDE5 inhibitors including (1) persistence of biochemical effects after inhibitor is cleared from cells, and (2) retention of drug in VSMC beyond plasma clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Burnett AL . Nitric oxide regulation of penile erection: biology and therapeutic implications. J Androl 2002; 23: S20–S26.

    Article  CAS  PubMed  Google Scholar 

  2. Burnett AL . The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens 2006; 8: 53–62.

    Article  CAS  Google Scholar 

  3. Hofmann F . The biology of cyclic GMP-dependent protein kinases. J Biol Chem 2005; 280: 1–4.

    Article  CAS  PubMed  Google Scholar 

  4. Lincoln TM, Dey N, Sellak H . Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 2001; 91: 1421–1430.

    Article  CAS  PubMed  Google Scholar 

  5. Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M et al. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res 2000; 87: 825–830.

    Article  CAS  PubMed  Google Scholar 

  6. Francis SH, Corbin JD . Phosphodiesterase-5 inhibition: the molecular biology of erectile function and dysfunction. Urol Clin North Am 2005; 32: 419–429.

    Article  PubMed  Google Scholar 

  7. Corbin JD, Francis SH . Molecular biology and pharmacology of PDE-5-inhibitor therapy for erectile dysfunction. J Androl 2003; 24: S38–S41.

    Article  CAS  PubMed  Google Scholar 

  8. Gopal VK, Francis SH, Corbin JD . Allosteric sites of phosphodiesterase-5 (PDE5). A potential role in negative feedback regulation of cGMP signaling in corpus cavernosum. Eur J Biochem/FEBS 2001; 268: 3304–3312.

    Article  CAS  Google Scholar 

  9. Francis SH, Zoraghi R, Kotera J, Ke H, Bessay EP, Blount MA et al. Phosphodiesterase 5: molecular characteristics relating to structure, function, and regulation. In: Beavo JA, Francis SH, Houslay MD (ed). Cyclic Nucleotide Phosphodiesterases in Health and Disease. CRC Press: Boca Raton, 2006, pp 131–164.

    Chapter  Google Scholar 

  10. Corbin JD, Francis SH . Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 1999; 274: 13729–13732.

    Article  CAS  PubMed  Google Scholar 

  11. Corbin JD, Turko IV, Beasley A, Francis SH . Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem/FEBS 2000; 267: 2760–2767.

    Article  CAS  Google Scholar 

  12. Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH et al. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 2004; 66: 144–152.

    Article  CAS  PubMed  Google Scholar 

  13. Corbin JD, Blount MA, Weeks II JL, Beasley A, Kuhn KP, Ho YS et al. [3H]sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 2003; 63: 1364–1372.

    Article  CAS  PubMed  Google Scholar 

  14. Corbin JD, Francis SH . Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 2002; 56: 453–459.

    CAS  PubMed  Google Scholar 

  15. Kuthe A . Phosphodiesterase 5 inhibitors in male sexual dysfunction. Curr Opin Urol 2003; 13: 405–410.

    Article  PubMed  Google Scholar 

  16. Stief CG . Phosphodiesterase inhibitors in the treatment of erectile dysfunction. Drugs Today 2000; 36: 93–99.

    Article  CAS  Google Scholar 

  17. Francis SH, Corbin JD . Molecular mechanisms and pharmacokinetics of phosphodiesterase-5 antagonists. Curr Urol Rep 2003; 4: 457–465.

    Article  PubMed  Google Scholar 

  18. Sandner P, Hutter J, Tinel H, Ziegelbauer K, Bischoff E . PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 2007; 19: 533–543.

    Article  CAS  PubMed  Google Scholar 

  19. Salem EA, Kendirci M, Hellstrom WJ . Udenafil, a long-acting PDE5 inhibitor for erectile dysfunction. Curr Opin Investig Drugs 2006; 7: 661–669.

    CAS  PubMed  Google Scholar 

  20. Moncada I, Jara J, Subira D, Castano I, Hernandez C . Efficacy of sildenafil citrate at 12 h after dosing: re-exploring the therapeutic window. Eur Urol 2004; 46: 357–360; discussion 360–351.

    Article  CAS  PubMed  Google Scholar 

  21. Gingell C, Sultana SR, Wulff MB, Gepi-Attee S . Duration of action of sildenafil citrate in men with erectile dysfunction. J Sex Med 2004; 1: 179–184.

    Article  CAS  PubMed  Google Scholar 

  22. Youn JM, Feldman RA, Auerbach SM, Kaufman JM, Garcia CS, Shen W et al. Tadalafil improved erectile function at twenty-four and thirty-six hours after dosing in men with erectile dysfunction: US trial. J Androl 2005; 26: 310–318.

    Article  Google Scholar 

  23. Porst H, Padma-Nathan H, Giuliano F, Anglin G, Varanese L, Rosen R . Efficacy of tadalafil for the treatment of erectile dysfunction at 24 and 36 h after dosing: a randomized controlled trial. Urol 2003; 62: 121–125; discussion 125–126.

    Article  PubMed  Google Scholar 

  24. Shabsigh R, Seftel AD, Rosen RC, Porst H, Ahuja S, Deeley MC et al. Review of time of onset and duration of clinical efficacy of phosphodiesterase type 5 inhibitors in treatment of erectile dysfunction. Urol 2006; 68: 689–696.

    Article  PubMed  Google Scholar 

  25. Thomas MK, Francis SH, Corbin JD . Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 1990; 265: 14964–14970.

    CAS  PubMed  Google Scholar 

  26. Turko IV, Francis SH, Corbin JD . Potential roles of conserved amino acids in the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 1998; 273: 6460–6466.

    Article  CAS  PubMed  Google Scholar 

  27. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 1996; 8: 47–52.

    CAS  PubMed  Google Scholar 

  28. Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM . Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 1998; 159: 2164–2171.

    Article  CAS  PubMed  Google Scholar 

  29. Turko IV, Ballard SA, Francis SH, Corbin JD . Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (type 5) by sildenafil and related compounds. Mol Pharmacol 1999; 56: 124–130.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta M, Kovar A, Meibohm B . The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J Clin Pharmacol 2005; 45: 987–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Valiquette L, Montorsi F, Hellstrom WJ, Giuliano F, Homering M, Taylor T et al. Penetration and maintenance of erection with vardenafil: a time-from-dosing analysis. Can J Urol 2005; 12: 2687–2698; discussion 2699.

    PubMed  Google Scholar 

  32. Barber R, Butcher RW . The quantitative relationship between intracellular concentration and egress of cyclic AMP from cultured cells. Mol Pharmacol 1981; 19: 38–43.

    CAS  PubMed  Google Scholar 

  33. Mercapide J, Santiago E, Alberdi E, Martinez-Irujo JJ . Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Biochem Pharmacol 1999; 58: 1675–1683.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang H, Colbran JL, Francis SH, Corbin JD . Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J Biol Chem 1992; 267: 1015–1019.

    CAS  PubMed  Google Scholar 

  35. Bessay EP, Zoraghi R, Blount MA, Grimes KA, Beasley A, Francis SH et al. Phosphorylation of phosphodiesterase-5 is promoted by a conformational change induced by sildenafil, vardenafil, or tadalafil. Front Biosci 2007; 12: 1899–1910.

    Article  CAS  PubMed  Google Scholar 

  36. Francis SH, Chu DM, Thomas MK, Beasley A, Grimes K, Busch JL et al. Ligand-induced conformational changes in cyclic nucleotide phosphodiesterases and cyclic nucleotide-dependent protein kinases. Methods 1998; 14: 81–92.

    Article  CAS  PubMed  Google Scholar 

  37. Francis SH, Grimes KA, Liu L, Thompson WJ, Corbin JD . Phosphorylation of isolated human PDE5 regulatory domain increases cGMP-binding affinity and induces an apparent conformational change. J Biol Chem 2001; 277: 47581–47587.

    Article  Google Scholar 

  38. Smith JA, Francis SH, Walsh KA, Kumar S, Corbin JD . Autophosphorylation of type Ibeta cGMP-dependent protein kinase increases basal catalytic activity and enhances allosteric activation by cGMP or cAMP. J Biol Chem 1996; 271: 20756–20762.

    Article  CAS  PubMed  Google Scholar 

  39. Busch JL, Bessay EP, Francis SH, Corbin JD . A conserved serine juxtaposed to the pseudosubstrate site of type I cGMP-dependent protein kinase contributes strongly to autoinhibition and lower cGMP affinity. J Biol Chem 2002; 277: 34048–34054.

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann F, Gensheimer HP, Gobel C . Autophosphorylation of cGMP-dependent protein kinase is stimulated only by occupancy of one of the two cGMP binding sites. FEBS Lett 1983; 164: 350–354.

    Article  CAS  PubMed  Google Scholar 

  41. Hofmann F, Gensheimer HP, Gobel C . cGMP-dependent protein kinase. Autophosphorylation changes the characteristics of binding site 1. Eur J Biochem 1985; 147: 361–365.

    Article  CAS  PubMed  Google Scholar 

  42. Chu DM, Francis SH, Thomas JW, Maksymovitch EA, Fosler M, Corbin JD . Activation by autophosphorylation or cGMP binding produces a similar apparent conformational change in cGMP-dependent protein kinase. J Biol Chem 1998; 273: 14649–14656.

    Article  CAS  PubMed  Google Scholar 

  43. Corbin JD, Doskeland SO . Studies of two different intrachain cGMP-binding sites of cGMP-dependent protein kinase. J Biol Chem 1983; 258: 11391–11397.

    CAS  PubMed  Google Scholar 

  44. Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR et al. Guanosine 3′,5′-cyclic monophosphate (cGMP)/cGMP-dependent protein kinase induce interleukin-6 transcription in osteoblasts. Mol Endocrinol 2007; 21: 1148–1162.

    Article  CAS  PubMed  Google Scholar 

  45. Pilz RB, Broderick KE . Role of cyclic GMP in gene regulation. Front Biosci 2005; 10: 1239–1268.

    Article  CAS  PubMed  Google Scholar 

  46. Lu Z, Liu D, Hornia A, Devonish W, Pagano M, Foster DA . Activation of protein kinase C triggers its ubiquitination and degradation. Mol Cell Biol 1998; 18: 839–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuo WL, Duke CJ, Abe MK, Kaplan EL, Gomes S, Rosner MR . ERK7 expression and kinase activity is regulated by the ubiquitin–proteosome pathway. J Biol Chem 2004; 279: 23073–23081.

    Article  CAS  PubMed  Google Scholar 

  48. Wyatt TA, Lincoln TM, Pryzwansky KB . Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem 1991; 266: 21274–21280.

    CAS  PubMed  Google Scholar 

  49. Pryzwansky KB, Wyatt TA, Lincoln TM . Cyclic guanosine monophosphate-dependent protein kinase is targeted to intermediate filaments and phosphorylates vimentin in A23187-stimulated human neutrophils. Blood 1995; 85: 222–230.

    CAS  PubMed  Google Scholar 

  50. Pryzwansky KB, Wyatt TA, Nichols H, Lincoln TM . Compartmentalization of cyclic GMP-dependent protein kinase in formyl-peptide stimulated neutrophils. Blood 1990; 76: 612–618.

    CAS  PubMed  Google Scholar 

  51. Murthy KS, Zhou H, Grider JR, Makhlouf GM . Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol 2003; 284: G1006–G1016.

    Article  CAS  Google Scholar 

  52. Golin-Bisello F, Bradbury N, Ameen N . STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 2005; 289: C708–C716.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu CB, Hewlett WA, Francis SH, Corbin JD, Blakely RD . Stimulation of serotonin transport by the cyclic GMP phosphodiesterase-5 inhibitor sildenafil. Eur J Pharmacol 2004; 504: 1–6.

    Article  CAS  PubMed  Google Scholar 

  54. Blount MA, Zoraghi R, Bessay EP, Beasley A, Francis SH, Corbin JD . Conversion of phosphodiesterase-5 (PDE5) catalytic site to higher affinity by PDE5 inhibitors. J Pharmacol Exp Ther 2007; 323: 730–737.

    Article  CAS  PubMed  Google Scholar 

  55. Bessay EP, Blount MA, Zoraghi R, Beasley A, Grimes KA, Francis SH et al. Phosphorylation increases conversion of phosphodiesterase-5 (PDE5) catalytic site to higher affinity by PDE5 inhibitors. J Pharmacol Exp Ther 2008, In press.

  56. Silhavy TJ, Szmelcman S, Boos W, Schwartz M . On the significance of the retention of ligand by protein. Proc Natl Aacd Sci USA 1975; 72: 2120–2124.

    Article  CAS  Google Scholar 

  57. Corbin JD, Sugden PH, West L, Flockhart DA, Lincoln TM, McCarthy D . Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 1978; 253: 3997–4003.

    CAS  PubMed  Google Scholar 

  58. Kotera J, Francis SH, Grimes KA, Rouse A, Blount MA, Corbin JD . Allosteric sites of phosphodiesterase-5 sequester cyclic GMP. Front Biosci 2004; 9: 378–386.

    Article  CAS  PubMed  Google Scholar 

  59. Kotera J, Grimes KA, Corbin JD, Francis SH . cGMP-dependent protein kinase protects cGMP from hydrolysis by phosphodiesterase-5. Biochem J 2003; 372: 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Corbin JD, Kotera J, Gopal VK, Cote RH, Francis SH . Regulation of cyclic nucleotide levels by sequestration. In: Bradshaw RH (ed). Handbook of Signaling. Academic Press: New York, 2004, pp 465–470.

    Google Scholar 

  61. Belfiore CJ, Yang RS, Chubb LS, Lohitnavy M, Lohitnavy OS, Andersen ME . Hepatic sequestration of chlordecone and hexafluoroacetone evaluated by pharmacokinetic modeling. Toxicology 2007; 234: 59–72.

    Article  CAS  PubMed  Google Scholar 

  62. Borzelleca JF, Lester D . Acute toxicity of some perhalogenated acetones. Toxicol Appl Pharmacol 1965; 7: 592–597.

    Article  CAS  PubMed  Google Scholar 

  63. Gillies PJ, Rickard RW . Toxicokinetics of [14C]hexafluoroacetone in the rat. Toxicol Appl Pharmacol 1984; 73: 23–29.

    Article  CAS  PubMed  Google Scholar 

  64. Belfiore A, Costantino A, Frasca F, Pandini G, Mineo R, Vigneri P et al. Overexpression of membrane glycoprotein PC-1 in MDA-MB231 breast cancer cells is associated with inhibition of insulin receptor tyrosine kinase activity. Mol Endocrinol 1996; 10: 1318–1326.

    CAS  PubMed  Google Scholar 

  65. Willis RC, Furlong CE . Purification and properties of a ribose-binding protein from Escherichia coli. J Biol Chem 1974; 249: 6926–6929.

    CAS  PubMed  Google Scholar 

  66. Wolfe L, Francis SH, Landiss LR, Corbin JD . Interconvertible cGMP-free and cGMP-bound forms of cGMP-dependent protein kinase in mammalian tissues. J Biol Chem 1987; 262: 16906–16913.

    CAS  PubMed  Google Scholar 

  67. Richarme G, Kepes A . Release of glucose from purified galactose-binding protein of Escherichia coli upon addition of galactose. Eur J Biochem/FEBS 1974; 45: 127–133.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH DK40029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Francis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, S., Morris, G. & Corbin, J. Molecular mechanisms that could contribute to prolonged effectiveness of PDE5 inhibitors to improve erectile function. Int J Impot Res 20, 333–342 (2008). https://doi.org/10.1038/ijir.2008.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijir.2008.4

Keywords

This article is cited by

Search

Quick links