Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Apnea of prematurity: pathogenesis and management strategies

Abstract

Apnea of prematurity (AOP) is a significant clinical problem manifested by an unstable respiratory rhythm reflecting the immaturity of respiratory control systems. This review will address the pathogenesis of and treatment strategies for AOP. Although the neuronal mechanisms leading to apnea are still not well understood, recent decades have provided better insight into the generation of the respiratory rhythm and its modulation in the neonate. Ventilatory responses to hypoxia and hypercarbia are impaired and inhibitory reflexes are exaggerated in the neonate. These unique vulnerabilities predispose the neonate to the development of apnea. Treatment strategies attempt to stabilize the respiratory rhythm. Caffeine remains the primary pharmacological treatment modality and is presumed to work through blockade of adenosine receptors A1 and A2. Recent evidences suggest that A2A receptors may have a greater role than previously thought. AOP typically resolves with maturation suggesting increased myelination of the brainstem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Bianchi AL, Gestreau C . The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol 2009; 168: 4–12.

    Article  PubMed  Google Scholar 

  2. Noble LM, Carlo WA, Miller MJ, DiFiore JM, Martin RJ . Transient changes in expiratory time during hypercapnia in premature infants. J Appl Physiol 1987; 62: 1010–1013.

    Article  CAS  PubMed  Google Scholar 

  3. Eichenwald EC, Ungarelli RA, Stark AR . Hypercapnia increases expiratory braking in preterm infants. J Appl Physiol 1993; 75: 2665–2670.

    Article  CAS  PubMed  Google Scholar 

  4. Martin RJ, Carlo WA, Robertson SS, Day WR, Bruce EN . Biphasic response of respiratory frequency to hypercapnea in preterm infants. Pediatr Res 1985; 19: 791–796.

    Article  CAS  PubMed  Google Scholar 

  5. Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES et al. Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 2009; 168: 49–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Frantz III ID, Adler SM, Thach BT, Taeusch Jr HW . Maturational effects on respiratory responses to carbon dioxide in premature infants. J Appl Physiol 1976; 41: 41–45.

    Article  PubMed  Google Scholar 

  7. Rigatto H, Brady JP, de la Torre Verduzco R . Chemoreceptor reflexes in preterm infants: II. The effect of gestational and postnatal age on the ventilatory response to inhaled carbon dioxide. Pediatrics 1975; 55: 614–620.

    CAS  PubMed  Google Scholar 

  8. Gerhardt T, Bancalari E . Apnea of prematurity. 1. Lung function and regulation of breathing. Pediatrics 1984; 74: 58–62.

    CAS  PubMed  Google Scholar 

  9. Khan A, Qurashi M, Kwiatkowski K, Cates D, Rigatto H . Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. J Appl Physiol 2005; 98: 1171–1176.

    Article  PubMed  Google Scholar 

  10. Cross KW, Oppe TE . The effect of inhalation of high and low concentration of oxygen on the respiration of the premature infant. J Physiol 1952; 117: 38.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Rigatto H, Kalapesi Z, Leahy FN, Durand M, MacCallum M, Cates D . Ventilatory response to 100% and 15% O2 during wakefulness and sleep in preterm infants. Early Hum Dev 1982; 7: 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Ang RC, Hoop B, Kazemi H . Role of glutamate as the central neurotransmitter in the hypoxic ventilatory response. J Appl Physiol 1992; 72: 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  13. Rigatto H, Brady JP, de la Torre Verduzco R . Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 1975; 55: 604–613.

    CAS  PubMed  Google Scholar 

  14. Alvaro R, Alvarez J, Kwiatkowski K, Cates D, Rigatto H . Small preterm infants (less than or equal to 1500 g) have only a sustained decrease in ventilation in response to hypoxia. Pediatr Res 1992; 32: 403–406.

    Article  CAS  PubMed  Google Scholar 

  15. Martin RJ, DiFiore JM, Jana L, Davis RL, Miller MJ, Coles SK et al. Persistence of the biphasic ventilatory response to hypoxia in preterm infants. J Pediatr 1998; 132: 960–964.

    Article  CAS  PubMed  Google Scholar 

  16. Eden GJ, Hanson MA . Effects of chronic hypoxia from birth on the ventilatory response to acute hypoxia in the newborn rat. J Physiol 1987; 392: 11–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ling L, Olson Jr EB, Vidruk EH, Mitchell GS . Attenuation of the hypoxic ventilatory response in adult rats following one month of perinatal hyperoxia. J Physiol 1996; 495: 561–571.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Katz-Salamon M, Jonsson B, Lagercrantz H . Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia. Pediatr Pulmonol 1995; 20: 101–106.

    Article  CAS  PubMed  Google Scholar 

  19. Cardot V, Chardon K, Tourneux P, Micallef S, Stéphan E, Léké A et al. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr Res 2007; 62: 591–596.

    Article  PubMed  Google Scholar 

  20. Nock ML, Difiore JM, Arko MK, Martin RJ . Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 2004; 144: 291–295.

    Article  PubMed  Google Scholar 

  21. Peng YJ, Rennison J, Prabhakar NR . Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol 2004; 97: 2020–2025.

    Article  PubMed  Google Scholar 

  22. Nault MA, Vincent SG, Fisher JT . Mechanisms of capsaicin- and lactic acid-induced bronchoconstriction in the newborn dog. J Physiol 1999; 515: 567–578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sant’Ambrogio G, Widdicombe J . Reflexes from airway rapidly adapting receptors. Respir Physiol 2001; 125: 33–45.

    Article  PubMed  Google Scholar 

  24. Fleming PJ, Bryan AC, Bryan MH . Functional immaturity of pulmonary irritant receptors and apnea in newborn preterm infants. Pediatrics 1978; 61: 515–518.

    CAS  PubMed  Google Scholar 

  25. Widdicombe JG, Sant’Ambrogio G, Mathew OP . Nervous receptors of the upper airway. In: Mathew OP, Sant’Ambrogio G (eds). Respiratory Function of the Upper Airway. Marcel Dekker: New York, 1988; 193–232.

    Google Scholar 

  26. Sant’Ambrogio G, Mathew OP, Fisher JT, Sant’Ambrogio FB . Laryngeal mechanoreceptors responding to transmural pressure, airflow and local muscle activity. Respir Physiol 1983; 54: 317–330.

    Article  PubMed  Google Scholar 

  27. Sant’Ambrogio G, Mathew OP, Sant’Ambrogio FB, Fisher JT . Laryngeal cold receptors. Respir Physiol 1985; 59: 35–44.

    Article  PubMed  Google Scholar 

  28. Mathew OP, Sant’Ambrogio G, Fisher JT, Sant’Ambrogio FB . Laryngeal pressure receptors. Respir Physiol 1984; 57: 113–122.

    Article  CAS  PubMed  Google Scholar 

  29. Boggs DF, Bartlett Jr D . Chemical specificity of a laryngeal apneic reflex in puppies. J Appl Physiol 1982; 53: 455–462.

    Article  CAS  PubMed  Google Scholar 

  30. Mendelowitz D . Superior laryngeal neurons directly excite cardiac vagal neurons within the nucleus ambiguus. Brain Res Bull 2000; 51: 135–138.

    Article  CAS  PubMed  Google Scholar 

  31. Fisher JT, Mathew OP, Sant’Ambrogio FB, Sant’Ambrogio G . Reflex effects and receptor responses to upper airway pressure and flow stimuli in developing puppies. J Appl Physiol 1985; 58: 258–264.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson P, Salisbury DM . Sucking and breathing during artificial feeding in the human neonate. In: Bosma JF, Showacre J (eds). Development of Upper Respiratory Anatomy and Function. NIH: Bethesda, MD, 1975; 206–211.

    Google Scholar 

  33. Perkett EA, Vaughan RL . Evidence for a laryngeal chemoreflex in some human preterm infants. Acta Paediatr Scand 1982; 71: 969–972.

    Article  CAS  PubMed  Google Scholar 

  34. Milner AD, Saunders RA, Hopkin IE . Apnoea induced by airflow obstruction. Arch Dis Child 1977; 52: 379–382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Thach BT, Schefft GL, Pickens DL, Menon AP . Influence of upper airway negative pressure reflex on response to airway occlusion in sleeping infants. J Appl Physiol 1989; 67: 749–755.

    Article  CAS  PubMed  Google Scholar 

  36. Widdicombe J . Nasal and pharyngeal reflexes. In: Mathew OP, Sant’Ambrogio G (eds). Respiratory Function of the Upper Airway. Marcel Dekker: New York, 1988; 233–258.

    Google Scholar 

  37. Jacobs BL, Heym J, Trulson ME . Behavioral and physiological correlates of brain serotoninergic unit activity. J Physiol (Paris) 1981; 77: 431–436.

    CAS  Google Scholar 

  38. Cohen G, Henderson-Smart DJ . Upper airway stability and apnea during nasal occlusion in newborn infants. J Appl Physiol 1986; 60: 1511–1517.

    Article  CAS  PubMed  Google Scholar 

  39. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003; 33: 459–461.

    Article  CAS  PubMed  Google Scholar 

  40. Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF et al. PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 2009; 168 (1–2): 125–132.

    Article  CAS  PubMed  Google Scholar 

  41. Menuet C, Dutschmann M, Hilaire G . Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168: 109–118.

    Article  PubMed  Google Scholar 

  42. Zanella S, Tauber M, Muscatelli F . Breathing deficits of the Prader-Willi syndrome. Respir Physiol Neurobiol 2009; 168: 119–124.

    Article  PubMed  Google Scholar 

  43. American Academy of Pediatrics, Committee on Fetus and Newborn. Apnea, sudden infant death syndrome, and home monitoring. Pediatrics 2003; 111: 914–917.

    Article  Google Scholar 

  44. Dransfield DA, Spitzer AR, Fox WW . Episodic airway obstruction in premature infants. Am J Dis Child 1983; 137: 441–443.

    CAS  PubMed  Google Scholar 

  45. Mathew OP, Roberts JL, Thach BT . Pharyngeal airway obstruction in preterm infants during mixed and obstructive apnea. J Pediatr 1982; 100: 964–968.

    Article  CAS  PubMed  Google Scholar 

  46. Brouillette RT, Thach BT . A neuromuscular mechanism maintaining extrathoracic airway patency. J Appl Physiol 1979; 46: 772–779.

    Article  CAS  PubMed  Google Scholar 

  47. Mathew OP . Maintenance of upper airway patency. J Pediatr 1985; 106: 863–869.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson SL, Thach BT, Brouillette RT, Abu-Osba YK . Upper airway patency in the human infant: influence of airway pressure and posture. J Appl Physiol 1980; 48: 500–504.

    Article  CAS  PubMed  Google Scholar 

  49. Safar P, Escarraga LA, Chang F . Upper airway obstruction in the unconscious patient. J Appl Physiol 1959; 14: 760–764.

    Article  CAS  PubMed  Google Scholar 

  50. Thach BT, Stark AR . Spontaneous neck flexion and airway obstruction during apneic spells in preterm infants. J Pediatr 1979; 94: 275–281.

    Article  CAS  PubMed  Google Scholar 

  51. Gabriel M, Albani M, Schulte FJ . Apneic spells and sleep states in preterm infants. Pediatrics 1976; 57: 142–147.

    CAS  PubMed  Google Scholar 

  52. Milner AD, Boon AW, Saunders RA, Hopkin IE . Upper airways obstruction and apnoea in preterm babies. Arch Dis Child 1980; 55: 22–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Idiong N, Lemke RP, Lin YJ, Kwiatkowski K, Cates DB, Rigatto H . Airway closure during mixed apneas in preterm infants: is respiratory effort necessary? J Pediatr 1998; 133: 509–512.

    Article  CAS  PubMed  Google Scholar 

  54. Rigatto H . Periodic breathing. In: Mathew OP (ed). Respiratory Control and its Disorders in the Newborn. Marcel Dekker: New York, 2003, pp 237–272.

    Google Scholar 

  55. Al-Saif S, Alvaro R, Manfreda J, Kwiatkowski K, Cates D, Qurashi M et al. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J Pediatr 2008; 153: 513–518.

    Article  CAS  PubMed  Google Scholar 

  56. Mathew OP . Apnea, bradycardia and desaturation: the clinical issues. In: Mathew OP (ed). Respiratory Control and its Disorders in the Newborn. Marcel Dekker: New York, 2003, pp 273–293.

    Google Scholar 

  57. Henderson-Smart DJ, Butcher-Puech MC, Edwards DA . Incidence and mechanism of bradycardia during apnoea in preterm infants. Arch Dis Child 1986; 61: 227–232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Vyas H, Milner AD, Hopkin IE . Relationship between apnoea and bradycardia in preterm infants. Acta Paediatr Scand 1981; 70: 785–790.

    Article  CAS  PubMed  Google Scholar 

  59. Carbone T, Marrero LC, Weiss J, Hiatt M, Hegyi T . Heart rate and oxygen saturation correlates of infant apnea. J Perinatol 1999; 19: 44–47.

    Article  CAS  PubMed  Google Scholar 

  60. Mathew OP, Gamble YD, Zimowski K . Prevalence of bradyarrhythmias during transient episodes of bradycardia among preterm Infants. J Neonatal-Perinatal Medicine 2008; 1: 43–47.

    Google Scholar 

  61. Andriessen P, Koolen AM, Bastin FH, Lafeber HN, Meijler FL . Supraventricular escape rhythms during transient episodes of bradycardia in preterm infants. Cardiol Young 2001; 11: 626–631.

    Article  CAS  PubMed  Google Scholar 

  62. Peter CS, Sprodowski N, Bohnhorst B, Silny J, Poets CF . Gastro esophageal reflux and apnea of prematurity: no temporal relationship. Pediatrics 2002; 109: 8–11.

    Article  PubMed  Google Scholar 

  63. Omari TI . Apnea-associated reduction in lower esophageal sphincter tone in premature infants. J Pediatr 2009; 154: 374–378.

    Article  PubMed  Google Scholar 

  64. Wheatley E, Kennedy KA . Cross-over trial of treatment for bradycardia attributed to gastroesophageal reflux in preterm infants. J Pediatr 2009; 155: 516–521.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Thoppil CK, Belan MA, Cowen CP, Mathew OP . Behavioral arousal in newborn infants and its association with termination of apnea. J Appl Physiol 1991; 70: 2479–2484.

    Article  CAS  PubMed  Google Scholar 

  66. Wulbrand H, Von Zezschwitz G, Bentele KHP . Submental and diaphragmatic muscle activity during and at resolution of mixed and obstructive apneas and cardiorespiratory arousal in preterm infants. Pediatr Res 1995; 38: 298–305.

    Article  CAS  PubMed  Google Scholar 

  67. McNamara F, Issa FQ, Sullivan CE . Arousal pattern following central and obstructive breathing abnormalities in infants and children. J Appl Physiol 1996; 81: 2651–2657.

    Article  CAS  PubMed  Google Scholar 

  68. Lawson EE . Nonpharmacological management of idiopathic apnea of the premature infant. In: Mathew OP (ed). Respiratory Control and its Disorders in the Newborn. Marcel Dekker: New York, 2003; 335–354.

    Google Scholar 

  69. Graham A, Finer NN . Pharmacotherapy of apnea of prematurity. In: Mathew OP (ed). Respiratory Control and its Disorders in the Newborn. Marcel Dekker: New York, 2003; 317–333.

    Google Scholar 

  70. Curzi-Dascalova L, Aujard Y, Gaultier C, Rajguru M . Sleep organization is unaffected by caffeine in premature infants. J Pediatr 2002; 140: 766–771.

    Article  PubMed  Google Scholar 

  71. Bairam A, Boutroy MJ, Badonnel Y, Vert P . Theophylline versus caffeine: comparative effects in treatment of idiopathic apnea in the preterm infant. J Pediatr 1987; 110: 636–639.

    Article  CAS  PubMed  Google Scholar 

  72. Brouard C, Moriette G, Murat I, Flouvat B, Pajot N, Walti H et al. Comparative efficacy of theophylline and caffeine in the treatment of idiopathic apnea in premature infants. Am J Dis Child 1985; 139: 698–700.

    CAS  PubMed  Google Scholar 

  73. Sims ME, Yau G, Rambhatla S, Cabal L, Wu PY . Limitations of theophylline in the treatment of apnea of prematurity. Am J Dis Child 1985; 139: 567–570.

    CAS  PubMed  Google Scholar 

  74. Erenberg A, Leff RD, Haack DG, Mosdell KW, Hicks GM, Wynne BA . Caffeine citrate for the treatment of apnea of prematurity: a double-blind, placebo-controlled study. Pharmacotherapy 2000; 20: 644–652.

    Article  CAS  PubMed  Google Scholar 

  75. Thurston JH, Hauhard RE, Dirgo JA . Aminophylline increases cerebral metabolic rate and decreases anoxic survival in young mice. Science 1978; 201: 649–651.

    Article  CAS  PubMed  Google Scholar 

  76. McDonnell M, Ives NK, Hope PL . Intravenous aminophylline and cerebral blood flow in preterm infants. Arch Dis Child 1992; 67: 416–418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Hoecker C, Nelle M, Poeschl J, Beedgen B, Linderkamp O . Caffeine impairs cerebral and intestinal blood flow velocity in preterm infants. Pediatrics 2002; 109: 784–787.

    Article  PubMed  Google Scholar 

  78. Chang J, Gray PH . Aminophylline therapy and cerebral blood flow velocity in preterm infants. J Paediatr Child Health 1994; 30: 123–125.

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Caffeine for Apnea of Prematurity Trial Group et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 2007; 357: 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Caffeine for Apnea of Prematurity Trial Group et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006; 354: 2112–2121.

    Article  CAS  PubMed  Google Scholar 

  81. Back SA, Craig A, Luo NL, Ren J, Akundi RS, Ribeiro I et al. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol 2006; 60: 696–705.

    Article  CAS  PubMed  Google Scholar 

  82. Boutilier RG . Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001; 204: 3171–3181.

    CAS  PubMed  Google Scholar 

  83. Dunwiddie TV, Masino SA . The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001; 24: 31–55.

    Article  CAS  PubMed  Google Scholar 

  84. Mayer CA, Haxhiu MA, Martin RJ, Wilson CG . Adenosine A2A receptors mediate GABAergic inhibition of respiration in immature rats. J Appl Physiol 2006; 100: 91–97.

    Article  CAS  PubMed  Google Scholar 

  85. Zaidi SI, Jafri A, Martin RJ, Haxhiu MA . Adenosine A2A receptors are expressed by GABAergic neurons of medulla oblongata in developing rat. Brain Res 2006; 1071: 42–53.

    Article  CAS  PubMed  Google Scholar 

  86. Barrington KJ, Finer NN, Peters KL, Barton J . Physiologic effects of doxapram in idiopathic apnea of prematurity. J Pediatr 1986; 108: 124–129.

    Article  CAS  PubMed  Google Scholar 

  87. Mitchell RA, Herbert DA . Potencies of doxapram and hypoxia in stimulating carotid-body chemoreceptors and ventilation in anesthetized cats. Anesthesiology 1975; 42: 559–566.

    Article  CAS  PubMed  Google Scholar 

  88. Brion LP, Vega-Rich C, Reinersman G, Roth P . Low-dose doxapram for apnea unresponsive to aminophylline in very low birthweight infants. J Perinatol 1991; 11: 359–364.

    CAS  PubMed  Google Scholar 

  89. Peliowski A, Finer NN . A blinded, randomized, placebo-controlled trial to compare theophylline and doxapram for the treatment of apnea of prematurity. Pediatr 1990; 116: 648–653.

    Article  CAS  Google Scholar 

  90. Kattwinkel J, Nearman HS, Fanaroff AA, Katona PG, Klaus MH . Apnea of prematurity. Comparative therapeutic effects of cutaneous stimulation and nasal continuous positive airway pressure. J Pediatr 1975; 86: 588–592.

    Article  CAS  PubMed  Google Scholar 

  91. Miller MJ, Carlo WA, Martin RF . Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. J Pediatr 1985; 106: 91–94.

    Article  CAS  PubMed  Google Scholar 

  92. Kosch PC, Stark AR . Dynamic maintenance of end-expiratory lung volume in full-term infants. J Appl Physiol 1984; 57: 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  93. Stark AR, Cohlan BA, Waggener TB, Frantz III ID, Kosch PC . Regulation of end-expiratory lung volume during sleep in premature infants. J Appl Physiol 1987; 62: 1117–1123.

    Article  CAS  PubMed  Google Scholar 

  94. Mathew OP, Sant’Ambrogio G, Fisher JT, Sant’Ambrogio FB . Laryngeal pressure receptors. Respir Physiol 1984; 57: 113–122.

    Article  CAS  PubMed  Google Scholar 

  95. Kubicka ZJ, Limauro J, Darnall RA . Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure? Pediatrics 2008; 121: 82–88.

    Article  PubMed  Google Scholar 

  96. Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H . High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics 2001; 107: 1081–1083.

    Article  CAS  PubMed  Google Scholar 

  97. Marlier L, Gaugler C, Messer J . Olfactory stimulation prevents apnea in premature newborns. Pediatrics 2005; 115: 83–88.

    Article  PubMed  Google Scholar 

  98. Al-Saif S, Alvaro R, Manfreda J, Kwiatkowski K, Cates D, Qurashi M et al. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J Pediatr 2008; 153: 513–518.

    Article  CAS  PubMed  Google Scholar 

  99. Bloch-Salisbury E, Indic P, Bednarek F, Paydarfar D . Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol 2009; 107: 1017–1027.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, Collaborative Home Infant Monitoring Evaluation (CHIME) Study Group et al. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA 2001; 285: 2199–2207.

    Article  CAS  PubMed  Google Scholar 

  101. Henderson-Smart DJ, Pettigrew AG, Campbell DJ . Clinical apnea and brain-stem neural function in preterm infants. N Engl J Med 1983; 308: 353–357.

    Article  CAS  PubMed  Google Scholar 

  102. Eichenwald EC, Aina A, Stark AR . Apnea frequently persists beyond term gestation in infants delivered at 24 to 28 weeks. Pediatrics 1997; 100: 354–359.

    Article  CAS  PubMed  Google Scholar 

  103. Zacharia A, Zimine S, Lovblad KO, Warfield S, Thoeny H, Ozdoba C et al. Early assessment of brain maturation by MR imaging segmentation in neonates and premature infants. Am J Neuroradiol 2006; 27: 972–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ . Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005; 115: 286–294.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O P Mathew.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, O. Apnea of prematurity: pathogenesis and management strategies. J Perinatol 31, 302–310 (2011). https://doi.org/10.1038/jp.2010.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2010.126

Keywords

This article is cited by

Search

Quick links