Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement

Abstract

Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. WHO. World Health Organization Report on the Global Tobacco Epidemic, available from: http://www.who.int/tobacco/mpower/2009/en/, 2009.

  2. Changeux JP . Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 2010; 11: 389–401.

    Article  CAS  Google Scholar 

  3. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP . Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8: 733–750.

    Article  CAS  Google Scholar 

  4. Marti F, Arib O, Morel C, Dufresne V, Maskos U, Corringer PJ et al. Smoke extracts and nicotine, but not tobacco extracts, potentiate firing and burst activity of ventral tegmental area dopaminergic neurons in mice. Neuropsychopharmacology 2011; 36: 2244–2257.

    Article  CAS  Google Scholar 

  5. Changeux JP, Edelstein SJ . Nicotinic Acetylcholine Receptors: From Molecular Biology to Cognition. Odile Jacob: New York, 2005.

    Google Scholar 

  6. Pontieri FE, Tanda G, Orzi F, Chiara GD . Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382: 255–257.

    Article  CAS  Google Scholar 

  7. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–177.

    Article  CAS  Google Scholar 

  8. Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP . Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 2001; 21: 1452–1463.

    Article  CAS  Google Scholar 

  9. Mansvelder HD, McGehee DS . Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 2002; 53: 606–617.

    Article  CAS  Google Scholar 

  10. Laviolette SR, van der Kooy D . The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 2004; 5: 55–65.

    Article  CAS  Google Scholar 

  11. Mansvelder HD, Keath JR, McGehee DS . Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002; 33: 905–919.

    Article  CAS  Google Scholar 

  12. Mansvelder HD, McGehee DS . Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000; 27: 349–357.

    Article  CAS  Google Scholar 

  13. Luscher C, Malenka RC . Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011; 69: 650–663.

    Article  Google Scholar 

  14. Sulzer D . How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 2011; 69: 628–649.

    Article  CAS  Google Scholar 

  15. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 2006; 50: 911–921.

    Article  CAS  Google Scholar 

  16. Dani JA, Bertrand D . Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699–729.

    Article  CAS  Google Scholar 

  17. Olivo-Marin JC . Extraction of spots in biological images using multiscale products. Pattern Recogn 2002; 35: 1989–1996.

    Article  Google Scholar 

  18. Tolu S, Avale ME, Nakatani H, Pons S, Parnaudeau S, Tronche F et al. A versatile system for the neuronal subtype specific expression of lentiviral vectors. FASEB J 2010; 24: 723–730.

    Article  CAS  Google Scholar 

  19. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 2005; 436: 103–107.

    Article  CAS  Google Scholar 

  20. David V, Cazala P . A comparative study of self-administration of morphine into the amygdala and the ventral tegmental area in mice. Behav Brain Res 1994; 65: 205–211.

    Article  CAS  Google Scholar 

  21. David V, Durkin TP, Cazala P . Differential effects of the dopamine D2/D3 receptor antagonist sulpiride on self-administration of morphine into the ventral tegmental area or the nucleus accumbens. Psychopharmacology (Berl) 2002; 160: 307–317.

    Article  CAS  Google Scholar 

  22. David V, Segu L, Buhot MC, Ichaye M, Cazala P . Rewarding effects elicited by cocaine microinjections into the ventral tegmental area of C57BL/6 mice: involvement of dopamine D1 and serotonin1B receptors. Psychopharmacology (Berl) 2004; 174: 367–375.

    Article  CAS  Google Scholar 

  23. David V, Gold LH, Koob GF, Cazala P . Anxiogenic-like effects limit rewarding effects of cocaine in balb/cbyj mice. Neuropsychopharmacology 2001; 24: 300–318.

    Article  CAS  Google Scholar 

  24. David V, Besson M, Changeux JP, Granon S, Cazala P . Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 2006; 50: 1030–1040.

    Article  CAS  Google Scholar 

  25. Mason PA, Milner PM, Miousse R . Preference paradigm: provides better self-stimulation reward discrimination than a rate-dependent paradigm. Behav Neural Biol 1985; 44: 521–529.

    Article  CAS  Google Scholar 

  26. David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P . Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33: 1746–1759.

    Article  CAS  Google Scholar 

  27. Maskos U . Emerging concepts: novel integration of in vivo approaches to localise the function of nicotinic receptors. J Neurochem 2007; 100: 596–602.

    Article  CAS  Google Scholar 

  28. Wise R . Brain reward circuitry: insights from unsensed incentives. Neuron 2002; 36: 229–240.

    Article  CAS  Google Scholar 

  29. Maskos U . The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 2008; 153 (Suppl 1): S438–S445.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maskos U . Role of endogenous acetylcholine in the control of the dopaminergic system via nicotinic receptors. J Neurochem 2010; 114: 641–646.

    Article  CAS  Google Scholar 

  31. Petersen DR, Norris KJ, Thompson JA . A comparative study of the disposition of nicotine and its metabolites in three inbred strains of mice. Drug Metab Dispos 1984; 12: 725–731.

    CAS  PubMed  Google Scholar 

  32. Graupner M, Gutkin BS . Modeling nicotinic neuromodulation from global functional and network levels to nAChR based mechanisms. Acta Pharmacol Sin 2009; 30: 681–693.

    Article  CAS  Google Scholar 

  33. Graupner M, Gutkin BS In: Gutkin BS, Ahmed SH (eds). Computational Neuroscience of Drug Addiction, Computational Neuroscience Series. Springer Verlag: Berlin, 2011, pp 111–144.

    Google Scholar 

  34. Dobi A, Margolis EB, Wang H-L, Harvey BK, Morales M . Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J Neurosci 2010; 30: 218–229.

    Article  CAS  Google Scholar 

  35. Graupner M, Gutkin BS . Tonic acetylcholine governs the phasic mesolimbic dopamine response to nicotine. PLoS Comp Biol 2012 (under consideration).

  36. Turiault M, Parnaudeau S, Milet A, Parlato R, Rouzeau JD, Lazar M et al. Analysis of dopamine transporter gene expression pattern—generation of DAT-iCre transgenic mice. FEBS J 2007; 274: 3568–3577.

    Article  CAS  Google Scholar 

  37. Fuchs EC, Doheny H, Faulkner H, Caputi A, Traub RD, Bibbig A et al. Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc Natl Acad Sci USA 2001; 98: 3571–3576.

    Article  CAS  Google Scholar 

  38. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM . Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30: 289–316.

    Article  CAS  Google Scholar 

  39. Bromberg-Martin ES, Matsumoto M, Hikosaka O . Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010; 68: 815–834.

    Article  CAS  Google Scholar 

  40. Valjent E, Pages C, Herve D, Girault JA, Caboche J . Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 2004; 19: 1826–1836.

    Article  Google Scholar 

  41. Girault JA, Valjent E, Caboche J, Herve D . ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 2007; 7: 77–85.

    Article  CAS  Google Scholar 

  42. Grace AA . Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991; 41: 1–24.

    Article  CAS  Google Scholar 

  43. Schultz W . Multiple dopamine functions at different time courses. Annu Rev Neurosci 2007; 30: 259–288.

    Article  CAS  Google Scholar 

  44. Gonon FG . Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 1988; 24: 19–28.

    Article  CAS  Google Scholar 

  45. Chergui K, Svenningsson P, Nomikos GG, Gonon F, Fredholm BB, Svennson TH . Increased expression of NGFI-A mRNA in the rat striatum following burst stimulation of the medial forebrain bundle. Eur J Neurosci 1997; 9: 2370–2382.

    Article  CAS  Google Scholar 

  46. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009; 324: 1080–1084.

    Article  CAS  Google Scholar 

  47. Corrigall WA . Nicotine self-administration in animals as a dependence model. Nicotine Tob Res 1999; 1: 11–20.

    Article  CAS  Google Scholar 

  48. Rose JE, Corrigall WA . Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology (Berl) 1997; 130: 28–40.

    Article  CAS  Google Scholar 

  49. Wessler I, Kirkpatrick CJ . Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008; 154: 1558–1571.

    Article  CAS  Google Scholar 

  50. Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA . Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008; 152: 1024–1031.

    Article  CAS  Google Scholar 

  51. Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P et al. Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 2007; 27: 8202–8218.

    Article  CAS  Google Scholar 

  52. Schultz W . Getting formal with dopamine and reward. Neuron 2002; 36: 241–263.

    Article  CAS  Google Scholar 

  53. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci USA 2009; 106: 7281–7288.

    Article  CAS  Google Scholar 

  54. Overton PG, Clark D . Burst firing in midbrain dopaminergic neurons. Brain Res 1997; 25: 312–334.

    Article  CAS  Google Scholar 

  55. Tepper JM, Lee CR In: Tepper JM, Abercrombie ED, Bolam JP (eds). Progress in Brain Research Vol. 160. Elsevier: Amsterdam, pp 189–208##2007.

    Google Scholar 

  56. Deister CA, Teagarden MA, Wilson CJ, Paladini CA . An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci 2009; 29: 15888–15897.

    Article  CAS  Google Scholar 

  57. Canavier CC, Landry RS . An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 2006; 96: 2549–2563.

    Article  CAS  Google Scholar 

  58. Kitai ST, Shepard PD, Callaway JC, Scroggs R . Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 1999; 9: 690–697.

    Article  CAS  Google Scholar 

  59. Exley R, Maubourguet N, David V, Eddine R, Evrard A, Pons S et al. Distinct contributions of nicotinic acetylcholine receptor subunit {alpha}4 and subunit {alpha}6 to the reinforcing effects of nicotine. Proc Natl Acad Sci USA 2011; 108: 7577–7582.

    Article  CAS  Google Scholar 

  60. Floresco SB, West AR, Ash B, Moore H, Grace AA . Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 2003; 6: 968–973.

    Article  CAS  Google Scholar 

  61. Grace AA, Floresco SB, Goto Y, Lodge DJ . Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 2007; 30: 220–227.

    Article  CAS  Google Scholar 

  62. Lodge DJ, Grace AA . The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 2006; 103: 5167–5172.

    Article  CAS  Google Scholar 

  63. Omelchenko N, Sesack SR . Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse 2009; 63: 895–906.

    Article  CAS  Google Scholar 

  64. Hong S, Hikosaka O . The globus pallidus sends reward-related signals to the lateral habenula. Neuron 2008; 60: 720–729.

    Article  CAS  Google Scholar 

  65. Lobb CJ, Wilson CJ, Paladini CA . A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104: 403–413.

    Article  CAS  Google Scholar 

  66. Grace AA, Bunney BS . Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Res 1985; 333: 271–284.

    Article  CAS  Google Scholar 

  67. Oster MA, Faure P, Gutkin BS . Society for Neuroscience Annual Meeting. San Diego, CA, 2010.

    Google Scholar 

  68. Graupner M, Gutkin BS . Society for Neuroscience Annual Meeting. Chicago, IL, 2009.

    Google Scholar 

  69. Miwa JM, Freedman R, Lester HA . Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron 2011; 70: 20–33.

    Article  CAS  Google Scholar 

  70. Dalley JW, Everitt BJ, Robbins TW . Impulsivity, compulsivity, and top–down cognitive control. Neuron 2011; 69: 680–694.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Benoît Forget and Henri Korn for helpful comments on the manuscript, and Jochen Roeper for help with slice electrophysiology. This work was supported by the Institut Pasteur, Centre National de la Recherche Scientifique CNRS URA 2182, UMR 7102, UMR 5287 and ATIP programme, the Agence Nationale pour la Recherche (ANR Neuroscience, Neurologie et Psychiatrie 2005 and 2009, and ANR BLANC 2009), Neuropôle IdF, INSERM U960, the RTRA Ecole des Neurosciences de Paris and the Bettencourt Schueller Foundation. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant no. HEALTH-F2-2008-202088 (‘NeuroCypres’ project to U.M.). ST acknowledges financial support from Fondation de la Recherche Médicale (FRM), and Pasteur-Weizmann.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Faure or U Maskos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolu, S., Eddine, R., Marti, F. et al. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry 18, 382–393 (2013). https://doi.org/10.1038/mp.2012.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.83

Keywords

This article is cited by

Search

Quick links