Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An abundant erythroid protein that stabilizes free α-haemoglobin

Abstract

The development of red blood cells (erythrocytes) is distinguished by high-level production of the oxygen carrier, haemoglobin A (HbA), a heterotetramer of α- and β-haemoglobin subunits. HbA synthesis is coordinated to minimize the accumulation of free subunits that form cytotoxic precipitates1,2,3. Molecular chaperones that regulate globin subunit stability, folding or assembly have been proposed to exist but have never been identified. Here we identify a protein stabilizing free α-haemoglobin by using a screen for genes induced by the essential erythroid transcription factor GATA-1 (refs 4, 5). Alpha Haemoglobin Stabilizing Protein (AHSP) is an abundant, erythroid-specific protein that forms a stable complex with free α-haemoglobin but not with β-haemoglobin or haemoglobin A (α2β2). Moreover, AHSP specifically protects free α-haemoglobin from precipitation in solution and in live cells. AHSP-gene-ablated mice exhibit reticulocytosis and abnormal erythrocyte morphology with intracellular inclusion bodies that stain positively for denatured haemoglobins. Hence, AHSP is required for normal erythropoiesis, probably acting to block the deleterious effects of free α-haemoglobin precipitation. Accordingly, AHSP gene dosage is predicted to modulate pathological states of α-haemoglobin excess, such as β-thalassaemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AHSP is a GATA-1-induced erythroid-specific gene.
Figure 2: AHSP binds free α-haemoglobin but not β-haemoglobin.
Figure 3: AHSP prevents oxidant-induced precipitation of α-haemoglobin in solution.
Figure 4: AHSP–α-haemoglobin interactions in mammalian cells.
Figure 5: Erythrocyte abnormalities in AHSP-gene-targeted mice.

References

  1. Baglioni, C. Chromosomal and cytoplasmic regulation of haemoglobin synthesis. Bibl. Haemat. 29, 1056–1063 (1966)

    Google Scholar 

  2. Nathan, D. G. & Gunn, R. B. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am. J. Med. 41, 815–830 (1966)

    Article  CAS  Google Scholar 

  3. Rachmiìewitz, E. & Schrier, S. L. in Disorders of Haemoglobin (eda Steinberg, M. H., Forget, B. G., Higgs, D. R. & Nagel, R. L.) 233–251 (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  4. Weiss, M. J. & Orkin, S. H. GATA transcription factors: Key regulators of hematopoiesis. Exp. Hematol. 23, 99–107 (1995)

    CAS  PubMed  Google Scholar 

  5. Shirihai, O. S., Gregory, T., Yu, C., Orkin, S. H. & Weiss, M. J. ABC-me, a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J. 19, 2492–2502 (2000)

    Article  CAS  Google Scholar 

  6. Weiss, M. J., Keller, G. & Orkin, S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1- embryonic stem cells. Genes Dev. 8, 1184–1197 (1994)

    Article  CAS  Google Scholar 

  7. Fujiwara, Y., Browne, C. P., Cunniff, K., Goff, S. C. & Orkin, S. H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl Acad. Sci. USA 93, 12355–12358 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Miele, G., Manson, J. & Clinton, M. A novel erythroid-specific marker of transmissible spongiform encephalopathies. Nature Med. 7, 361–364 (2001)

    Article  CAS  Google Scholar 

  9. Nathan, D. G., Stossel, T. B., Gunn, R. B., Zarkowsky, H. S. & Laforet, M. T. Influence of hemoglobin precipitation on erythrocyte metabolism in alpha and beta thalassemia. J. Clin. Invest. 48, 33–41 (1969)

    Article  CAS  Google Scholar 

  10. Shinar, E., Shalev, O., Rachmilewitz, E. A. & Schrier, S. L. Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia. Blood 70, 158–164 (1987)

    CAS  PubMed  Google Scholar 

  11. Sorensen, S., Rubin, E., Polster, H., Mohandas, N. & Schrier, S. The role of membrane skeletal-associated alpha-globin in the pathophysiology of beta-thalassemia. Blood 75, 1333–1336 (1990)

    CAS  PubMed  Google Scholar 

  12. Yuan, J. et al. The instability of the membrane skeleton in thalassemic red blood cells. Blood 86, 3945–3950 (1995)

    CAS  PubMed  Google Scholar 

  13. Yuan, J. et al. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe beta-thalassemia (Cooley's anemia). Blood 82, 374–377 (1993)

    CAS  PubMed  Google Scholar 

  14. Pootrakul, P. et al. A correlation of erythrokinetics, ineffective erythropoiesis, and erythroid precursor apoptosis in Thai patients with thalassemia. Blood 96, 2606–2612 (2000)

    CAS  PubMed  Google Scholar 

  15. Centis, F. et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with beta-thalassemia major. Blood 96, 3624–3629 (2000)

    CAS  PubMed  Google Scholar 

  16. Rachmilewitz, E. A., Peisach, J. & Blumberg, W. E. Studies on the stability of oxyhemoglobin A and its constituent chains and their derivatives. J. Biol. Chem. 246, 3356–3366 (1971)

    CAS  PubMed  Google Scholar 

  17. Wickramasinghe, S. N. & Hughes, M. Ultrastructural studies of erythropoiesis in beta-thalassaemia trait. Br. J. Haematol. 46, 401–407 (1980)

    Article  CAS  Google Scholar 

  18. Ciavatta, D. J., Ryan, T. M., Farmer, S. C. & Townes, T. M. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Proc. Natl Acad. Sci. USA 92, 9259–9263 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Yang, B. et al. A mouse model for beta (0)-thalassemia. Proc. Natl Acad. Sci. USA 92, 11608–11612 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Shaeffer, J. R. Evidence for soluble alpha-chains as intermediates in hemoglobin synthesis in the rabbit reticulocyte. Biochem. Biophys. Res. Commun. 28, 647–652 (1967)

    Article  CAS  Google Scholar 

  21. Tavill, A. S., Grayzel, A. I., Vanderhoff, G. A. & London, I. M. The control of hemoglobin synthesis. Trans. Assoc. Am. Physic. 80, 305–313 (1967)

    CAS  Google Scholar 

  22. Prusiner, S. B., Scott, M. R., DeArmond, S. J. & Cohen, F. E. Prion protein biology. Cell 93, 337–348 (1998)

    Article  CAS  Google Scholar 

  23. Wickner, S., Maurizi, M. R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999)

    Article  CAS  Google Scholar 

  24. Bank, A. & O'Donnell, J. V. Intracellular loss of free α chains in β-thalassaemia. Nature 222, 295–296 (1969)

    Article  ADS  CAS  Google Scholar 

  25. Shaeffer, J. R. Turnover of excess hemoglobin α chains in β-thalassemic cells is ATP-dependent. J. Biol. Chem. 258, 13172–13177 (1983)

    CAS  PubMed  Google Scholar 

  26. Huang, S.-C. & Benz, E. J. in Disorders of Haemoglobin (eds Steinberg, M. H., Forget, B. G., Higgs, D. R. & Nagel, R. L.) 146–173 (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  27. Gregory, T. et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94, 87–96 (1999)

    CAS  PubMed  Google Scholar 

  28. Ikeda-Saito, M., Inubushi, T. & Yonetani, T. in Hemoglobins (eds Antonini, E., Rossi-Bernardi, L. & Chiancone, E.) 113–121 (Academic, New York, 1981)

    Book  Google Scholar 

  29. Rachmilewitz, E. A. Denaturation of the normal and abnormal hemoglobin molecule. Semin. Hematol. 11, 441–462 (1974)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Krishnaswamy for advice and assistance in biochemical studies and use of equipment, J. Yu and Z. He for technical assistance, D. Speicher for assistance with protein sequencing, C. Clendenin for assistance with mouse blastocyst injections, T. Labosky for providing embryonic stem cells, and D. Nathan, D. Pellman and W. Englander for helpful discussions and review of the manuscript. This work was funded by grants from the Cooley's Anemia Foundation (M.J.W.), the Unico Foundation (M.J.W.) and the National Institutes of Health (M.J.W., J.E.R. and G.A.B.) M.J.W. is a recipient of The American Society of Hematology Junior Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell J. Weiss.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihm, A., Kong, Y., Hong, W. et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature 417, 758–763 (2002). https://doi.org/10.1038/nature00803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00803

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing