Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex

Abstract

In mammalian cells, a conserved multiprotein complex of Mre11, Rad50 and NBS1 (also known as nibrin and p95) is important for double-strand break repair, meiotic recombination and telomere maintenance1,2,3,4. This complex forms nuclear foci and may be a sensor of double-strand breaks. In the absence of the early region E4, the double-stranded DNA genome of adenovirus is joined into concatemers too large to be packaged5,6. We have investigated the cellular proteins involved in this concatemer formation and how they are inactivated by E4 products during a wild-type infection. Here we show that concatemerization requires functional Mre11 and NBS1, and that these proteins are found at foci adjacent to viral replication centres. Infection with wild-type virus results in both reorganization and degradation of members of the Mre11–Rad50–NBS1 complex. These activities are mediated by three viral oncoproteins that prevent concatemerization. This targeting of cellular proteins involved in genomic stability suggests a mechanism for ‘hit-and-run’ transformation observed for these viral oncoproteins7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adenovirus genome concatemer formation with wild-type (Ad5) and mutant viruses in human cell lines.
Figure 2: The Mre11, Rad50 and NBS1 proteins are altered during infection with Ad.
Figure 3: The Mre11–Rad50–NBS1 complex accumulates at viral replication centres in the absence of E4.
Figure 4: Concatemer formation during Ad infection is prevented by both degradation of cellular DNA repair proteins by the E4orf6–E1b55K complex and redistribution of the Mre11–Rad50–NBS1 complex by E4orf3.
Figure 5: Concatemer formation requires an intact nuclease domain in Mre11.

Similar content being viewed by others

References

  1. Haber, J. E. The many interfaces of Mre11. Cell 95, 583–586 (1998)

    Article  CAS  Google Scholar 

  2. Petrini, J. H. The mammalian Mre11–Rad50–nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am. J. Hum. Genet. 64, 1264–1269 (1999)

    Article  CAS  Google Scholar 

  3. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000)

    Article  CAS  Google Scholar 

  4. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998)

    Article  CAS  Google Scholar 

  5. Weiden, M. D. & Ginsberg, H. S. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc. Natl Acad. Sci. USA 91, 153–157 (1994)

    Article  ADS  CAS  Google Scholar 

  6. Boyer, J., Rohleder, K. & Ketner, G. Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263, 307–312 (1999)

    Article  CAS  Google Scholar 

  7. Nevels, M., Tauber, B., Spruss, T., Wolf, H. & Dobner, T. “Hit-and-run” transformation by adenovirus oncogenes. J. Virol. 75, 3089–3094 (2001)

    Article  CAS  Google Scholar 

  8. Bridge, E. & Ketner, G. Redundant control of adenovirus late gene expression by early region 4. J. Virol. 63, 631–638 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Halbert, D. N., Cutt, J. R. & Shenk, T. Adenoviral early region 4 encodes functions required for efficient DNA replication, late expression, and host cell shutoff. J. Virol. 56, 250–257 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weinberg, D. H. & Ketner, G. Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J. Virol. 57, 833–838 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bridge, E. & Ketner, G. Interaction of adenoviral E4 and E1b products in late gene expression. Virology 174 (1990)

  12. Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999)

    Article  CAS  Google Scholar 

  13. Lombard, D. B. & Guarente, L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 60, 2331–2334 (2000)

    CAS  PubMed  Google Scholar 

  14. Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21, 6006–6016 (2001)

    Article  CAS  Google Scholar 

  15. Wu, G., Lee, W. H. & Chen, P. L. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. J. Biol. Chem. 275, 30618–30622 (2000)

    Article  CAS  Google Scholar 

  16. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000)

    Article  CAS  Google Scholar 

  19. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Cathomen, T. & Weitzman, M. D. A functional complex of adenovirus proteins E1B-55 kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J. Virol. 74, 11407–11412 (2000)

    Article  CAS  Google Scholar 

  21. Querido, E. et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117 (2001)

    Article  CAS  Google Scholar 

  22. Doucas, V. et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 10, 196–207 (1996)

    Article  CAS  Google Scholar 

  23. de Vries, E., van Driel, W., Bergsma, W. G., Arnberg, A. C. & van der Vliet, P. C. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208, 65–78 (1989)

    Article  CAS  Google Scholar 

  24. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999)

    Article  CAS  Google Scholar 

  25. Haber, J. E. A super new twist on the initiation of meiotic recombination. Cell 89, 163–166 (1997)

    Article  CAS  Google Scholar 

  26. Bressan, D. A., Olivares, H. A., Nelms, B. E. & Petrini, J. H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150, 591–600 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weinberg, D. H. & Ketner, G. A cell line that supports the growth of a defective early region 4 deletion mutant of human adenovirus type 2. Proc. Natl Acad. Sci. USA 80, 5383–5386 (1983)

    Article  ADS  CAS  Google Scholar 

  29. Weitzman, M. D., Fisher, K. J. & Wilson, J. M. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J. Virol. 70, 1845–1854 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Ketner for the E4 mutant viruses and W162 cells, I. Verma for retrovirus constructs and cell lines, T. Paull for cDNAs; B. Gilbert for technical assistance; S. Malpel for complemented NBS cells; J. Bailis for advice on PFGE; M. Blower and the Center for Cytometry and Molecular Imaging at the Salk Institute for deconvolution assistance; J. Simon for help with figures; J. Weitzman, M. Grifman, T. Cathomen, C. Barlow, R. Bushman and S. Forsburg for critically reading the manuscript; R. Evans, T. Hunter, G. Wahl, B. Sefton, D. Spector, T. de Lange and J. Petrini for discussions; S. Stampfer for encouragement; and the James B. Pendleton Charitable Trust for providing the Pendelton Microscopy Facility. M.D.W. is supported in part by a grant from NIH, and by gifts from the Joe W. & Dorothy Dorsett Brown Foundation and the Lebensfeld Foundation. T.S. was supported by an NIH Graduate Training Grant to UCSD, and by fellowships from the Chapman Foundation, the Legler Benbough Foundation and the Salk Institute Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Weitzman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stracker, T., Carson, C. & Weitzman, M. Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex. Nature 418, 348–352 (2002). https://doi.org/10.1038/nature00863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00863

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing