Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for Wnt signalling in self-renewal of haematopoietic stem cells

Abstract

Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated β-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activated β-catenin promotes growth of HSCs in vitro and maintains the immature phenotype of HSCs in long-term cultures.
Figure 2: Activated β-catenin-transduced HSCs reconstitute lethally irradiated mice and give rise to multiple haematopoietic lineages.
Figure 3: HSCs respond to Wnt signalling in native bone marrow microenvironment.
Figure 4: Inhibition of Wnt signalling reduces growth of HSCs in vitro and inhibits reconstitution in vivo.
Figure 5: HSCs expressing β-catenin upregulate HoxB4 and Notch1.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1989); erratum 244, 1030 (1989)

    Article  ADS  Google Scholar 

  2. Uchida, N. & Weissman, I. L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992)

    Article  CAS  PubMed  Google Scholar 

  3. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13, 15–24 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Hawley, R. G., Fong, A. Z., Burns, B. F. & Hawley, T. S. Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J. Exp. Med. 176, 1149–1163 (1992)

    Article  CAS  PubMed  Google Scholar 

  7. Barth, A. I., Stewart, D. B. & Nelson, W. J. T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant beta- catenin. Proc. Natl Acad. Sci. USA 96, 4947–4952 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Domen, J. & Weissman, I. L. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J. Exp. Med. 192, 1707–1718 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Randall, T. D. & Weissman, I. L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997)

    CAS  PubMed  Google Scholar 

  12. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature advance online publication, 27 April 2003 (doi:10.1038/nature01611)

  13. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA 96, 3546–3551 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Sakanaka, C., Weiss, J. B. & Williams, L. T. Bridging of β-catenin and glycogen synthase kinase-3β by axin and inhibition of β-catenin-mediated transcription. Proc. Natl Acad. Sci. USA 95, 3020–3023 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamamoto, H. et al. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3β and β-catenin and inhibits axis formation of Xenopus embryos. Mol. Cell Biol. 18, 2867–2875 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hart, M. J., de los Santos, R., Albert, I. N., Rubinfeld, B. & Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumour suppressor, β-catenin and GSK3 β. Curr. Biol. 8, 573–581 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med. 6, 1278–1281 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Miller, C. L. & Eaves, C. J. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl Acad. Sci. USA 94, 13648–13653 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Audet, J., Zandstra, P. W., Eaves, C. J. & Piret, J. M. Advances in hematopoietic stem cell culture. Curr. Opin. Biotechnol. 9, 146–151 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001)

    Article  CAS  Google Scholar 

  26. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hing, H. K., Sun, X. & Artavanis-Tsakonas, S. Modulation of wingless signaling by Notch in Drosophila. Mech. Dev. 47, 261–268 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. & Kenyon, C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37–49 (1999)

    CAS  PubMed  Google Scholar 

  29. Hooper, J. E. Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature 372, 461–464 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ingham, P. W. & Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development 117, 283–291 (1993)

    CAS  PubMed  Google Scholar 

  31. Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997)

    CAS  PubMed  Google Scholar 

  32. Van Den Berg, D. J., Sharma, A. K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998)

    CAS  PubMed  Google Scholar 

  33. Zhu, A. J. & Watt, F. M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298 (1999)

    CAS  PubMed  Google Scholar 

  34. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Korinek, V. et al. Depletion of epithelia stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 1–5 (1998)

    Article  Google Scholar 

  36. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Chenn, A. & Walsh, C. A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nature Genet. 32, 594–605 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of BCL-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–364 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T. & Marincola, F. M. High-fidelity mRNA amplification for gene profiling. Nature Biotechnol. 18, 457–459 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. J. Nelson and A. Barth for providing the β-catenin construct; G. Nolan and L. Naldini for providing the retroviral and lentiviral packaging systems; F. Costantini for providing the axin construct; J. Nathans for the Fzd8-CRD IgG construct; H. Clevers and B. Vogelstein for providing the modified LEF-1/TCF elements used in the reporter constructs; A. Carlton for help with proliferation assays; and P. Feliciano for generation of retroviral constructs. We are grateful to L. Jerabek and P. Shahi for laboratory management and technical help; L. Hidalgo for animal care; S. Smith and V. Braunstein for preparation of antibodies; M. Cook for cell sorting; and M. Krangel for use of the Light Cycler. D.C.S. is a fellow of the American Cancer Society, L.A. is a fellow of the Canadian Institute of Health Research and R.N. is an investigator of the Howard Hughes Medical Institute. This work was supported by NIH grants awarded to I.L.W., and funds from the Cancer Research Institute, Leukemia Research Foundation and the NIH awarded to T.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tannishtha Reya.

Ethics declarations

Competing interests

I.L.W. is a co-founder of a company, Cellerant Therapeutics, Inc., established 31 January 2003, that has interests in haematopoietic stem cell biology and expansion. It does not fund any of the research of I.L.W. at Stanford.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reya, T., Duncan, A., Ailles, L. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003). https://doi.org/10.1038/nature01593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01593

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing