Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain

Abstract

Microtubules are cytoskeletal polymers of tubulin involved in many cellular functions. Their dynamic instability is controlled by numerous compounds and proteins, including colchicine1 and stathmin family proteins2,3. The way in which microtubule instability is regulated at the molecular level has remained elusive, mainly because of the lack of appropriate structural data. Here, we present the structure, at 3.5 Å resolution, of tubulin in complex with colchicine and with the stathmin-like domain (SLD) of RB3. It shows the interaction of RB3-SLD with two tubulin heterodimers in a curved complex capped by the SLD amino-terminal domain, which prevents the incorporation of the complexed tubulin into microtubules. A comparison with the structure of tubulin in protofilaments4 shows changes in the subunits of tubulin as it switches from its straight conformation to a curved one. These changes correlate with the loss of lateral contacts and provide a rationale for the rapid microtubule depolymerization characteristic of dynamic instability. Moreover, the tubulin–colchicine complex sheds light on the mechanism of colchicine's activity: we show that colchicine binds at a location where it prevents curved tubulin from adopting a straight structure, which inhibits assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The tubulin–colchicine:RB3-SLD complex.
Figure 2: Tubulin subunit changes between the curved and straight structures.
Figure 3: The colchicine-binding site on tubulin.

Similar content being viewed by others

References

  1. Panda, D., Daijo, J. E., Jordan, M. A. & Wilson, L. Kinetic stabilization of microtubule dynamics at steady state in vitro by substoichiometric concentrations of tubulin-colchicine complex. Biochemistry 34, 9921–9929 (1995)

    Article  CAS  Google Scholar 

  2. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996)

    Article  CAS  Google Scholar 

  3. Charbaut, E. et al. Stathmin family proteins display specific molecular and tubulin binding properties. J. Biol. Chem. 276, 16146–16154 (2001)

    Article  CAS  Google Scholar 

  4. Löwe, J., Li, H., Downing, K. H. & Nogales, E. Refined structure of αβ-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001)

    Article  Google Scholar 

  5. Weisenberg, R. C., Borisy, G. G. & Taylor, E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7, 4466–4479 (1968)

    Article  CAS  Google Scholar 

  6. Bane Hastie, S. Interactions of colchicine with tubulin. Pharmacol Ther. 51, 377–401 (1991)

    Article  Google Scholar 

  7. Bai, R. et al. Mapping the binding site of colchicinoids on β-tubulin. J. Biol. Chem. 275, 40443–40452 (2000)

    Article  CAS  Google Scholar 

  8. Cassimeris, L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18–24 (2002)

    Article  CAS  Google Scholar 

  9. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D. & Carlier, M.-F. Stathmin is a tubulin sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10817–10821 (1997)

    Article  CAS  Google Scholar 

  10. Curmi, P. A. et al. The stathmin tubulin interaction in vitro. J. Biol. Chem. 272, 25029–25036 (1997)

    Article  CAS  Google Scholar 

  11. Gigant, B. et al. The 4 Å X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809–816 (2000)

    Article  CAS  Google Scholar 

  12. Burling, F. T., Weis, W. I., Flaherty, K. M. & Brunger, A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271, 72–77 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Maucuer, A., Moreau, J., Mechali, M. & Sobel, A. Stathmin gene family: phylogenetic conservation and developmental regulation in Xenopus. J. Biol. Chem. 268, 16420–16429 (1993)

    CAS  PubMed  Google Scholar 

  14. Beretta, L., Dobransky, T. & Sobel, A. Multiple phosphorylation of stathmin: identification of four sites phosphorylated in intact cells and in vitro by cyclic-AMP dependent protein kinase and p34cdc2. J. Biol. Chem. 268, 20076–20084 (1993)

    CAS  PubMed  Google Scholar 

  15. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999)

    Article  CAS  Google Scholar 

  16. Steinmetz, M. O. et al. Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J. 19, 572–580 (2000)

    Article  CAS  Google Scholar 

  17. Honnappa, S., Cutting, B., Jahnke, W., Seelig, J. & Steinmetz, M. O. Thermodynamics of the Op18/stathmin-tubulin interaction. J. Biol. Chem. 278, 38926–38934 (2003)

    Article  CAS  Google Scholar 

  18. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998)

    Article  CAS  Google Scholar 

  19. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E. & Downing, K. H. Microtubule structure at 8 Å resolution. Structure 10, 1317–1328 (2002)

    Article  CAS  Google Scholar 

  20. Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998)

    Article  ADS  Google Scholar 

  21. Müller-Reichert, T., Chrétien, D., Severin, F. & Hyman, A. A. Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate. Proc. Natl Acad. Sci. USA 95, 3661–3666 (1998)

    Article  ADS  Google Scholar 

  22. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  23. Wilson, L., Bamburg, J. R., Mizel, S. B., Grisham, L. M. & Creswell, K. M. Interaction of drugs with microtubule proteins. Fed. Proc. 33, 158–166 (1974)

    CAS  PubMed  Google Scholar 

  24. Shearwin, K. E. & Timasheff, S. N. Effect of colchicine analogues on the dissociation of αβ tubulin into subunits: the locus of colchicine binding. Biochemistry 33, 894–901 (1994)

    Article  CAS  Google Scholar 

  25. Burns, R. G. Analysis of the colchicine-binding site of β-tubulin. FEBS Lett. 297, 205–208 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Skoufias, D. A. & Wilson, L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31, 738–746 (1992)

    Article  CAS  Google Scholar 

  27. Diederichs, K., McSweeney, S. & Ravelli, R. B. Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr. D 59, 903–909 (1992)

    Article  Google Scholar 

  28. De La Fortelle, E. & Bricogne, G. in Methods in Enzymology (eds Carter, C. W. & Sweet, R. M.) 472–494 (Academic, New York, 1997)

    Google Scholar 

  29. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

  30. Schneider, T. R. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallogr. D 58, 195–208 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the ESRF for the provision of synchrotron radiation facilities. We thank E. Charbaut for discussions, C. Petosa for critical reading of the manuscript and L. Lebeau for providing us with DAMA-colchicine. This work was supported by grants from the Association pour la Recherche contre le Cancer, the CNRS and the INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Knossow.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary information

Includes supplementary methods, data collection and phasing statistics. (DOC 50 kb)

Supplementary figure 1

Interference between a T2R α subunit and a protofilament β subunit positioned as across an intradimer longitudinal interface. (JPG 39 kb)

Supplementary figure 2

Difference electron density map for podophyllotoxin. (PDF 708 kb)

Supplementary figure 3

Experimental electron density map. (JPG 55 kb)

Supplementary figure legends (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravelli, R., Gigant, B., Curmi, P. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004). https://doi.org/10.1038/nature02393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02393

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing