Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of cholesterol and lipid organization in disease

Abstract

Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann–Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular cholesterol transport.
Figure 2: Cholesterol efflux.
Figure 3: Entry and cholesterol loading of macrophages in atherosclerotic lesions.
Figure 4: Free cholesterol-induced apoptosis in macrophages.

Similar content being viewed by others

References

  1. Lee, A. G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Mukherjee, S. & Maxfield, F. R. Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Holowka, D. et al. Lipid segregation and IgE receptor signaling: A decade of progress. Biochim. Biophys. Acta 10.1016/j.bbamcr.2005.06.007 (2005).

  5. Goldstein, J. L. & Brown, M. S. Molecular medicine. The cholesterol quartet. Science 292, 1310–1312 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Anitschkow, N. & Chalatow, S. Über experimentelle cholesterinsteatose und ihre bedeutung für die einiger pathologischer prozesse. Zentralbl. Allg. Pathol. 24, 1–9 (1913).

    Google Scholar 

  7. Wolozin, B. Cholesterol, statins and dementia. Curr. Opin. Lipidol. 15, 667–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nature Rev. Mol. Cell Biol. 2, 504–513 (2001).

    Article  CAS  Google Scholar 

  11. Schroeder, R. J., Ahmed, S. N., Zhu, Y., London, E. & Brown, D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J. Biol. Chem. 273, 1150–1157 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Resh, M. D. Membrane targeting of lipid modified signal transduction proteins. Subcell. Biochem. 37, 217–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, T. Y., Leventis, R. & Silvius, J. R. Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 40, 13031–13040 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. & Brown, D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J. Biol. Chem. 274, 3910–3917 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bretscher, M. S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4038 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pierini, L. M. et al. Membrane lipid organization is critical for human neutrophil polarization. J. Biol. Chem. 278, 10831–10841 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Feramisco, J. D. et al. Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change. Proc. Natl Acad. Sci. USA 102, 3242–3247 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hao, M. et al. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277, 609–617 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Maxfield, F. R. & Wustner, D. Intracellular cholesterol transport. J. Clin. Invest. 110, 891–898 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vainio, S. & Ikonen, E. Macrophage cholesterol transport: a critical player in foam cell formation. Ann. Med. 35, 146–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Soccio, R. E. & Breslow, J. L. Intracellular cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 24, 1150–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Strauss, J. F., Kishida, T., Christenson, L. K., Fujimoto, T. & Hiroi, H. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell Endocrinol. 202, 59–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Wustner, D., Mondal, M., Tabas, I. & Maxfield, F. R. Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 6, 396–412 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. Sleat, D. E. et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc. Natl Acad. Sci. USA 101, 5886–5891 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carstea, E. et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Blanchette-Mackie, E. Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim Biophys Acta 1486, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Mukherjee, S. & Maxfield, F. R. Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta 1685, 28–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, T. Y., Chang, C. C. & Cheng, D. Acyl-coenzyme A:cholesterol acyltransferase. Annu. Rev. Biochem. 66, 613–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yeaman, S. J. Hormone-sensitive lipase—new roles for an old enzyme. Biochem. J. 379, 11–22 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. et al. Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J. Biol. Chem. 278, 11642–11647 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Lange, Y., Ye, J. & Steck, T. L. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc. Natl Acad. Sci. USA 101, 11664–11667 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tall, A. R., Costet, P. & Wang, N. Regulation and mechanisms of macrophage cholesterol efflux. J. Clin. Invest. 110, 899–904 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pohl, A., Devaux, P. F. & Herrmann, A. Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim. Biophys. Acta 1733, 29–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Fielding, C. J. & Fielding, P. E. Cellular cholesterol efflux. Biochim. Biophys. Acta 1533, 175–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y. et al. Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J. Biol. Chem. 278, 5813–5820 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, N. & Tall, A. R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Schroepfer, G. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80, 361–554 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Costet, P. et al. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol. Cell Biol. 23, 7756–7766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Oram, J. F. ATP-binding cassette transporter A1 and cholesterol trafficking. Curr. Opin. Lipidol. 13, 373–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sampath, H. & Ntambi, J. M. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25, 317–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kolter, T. & Sandhoff, K. Principles of lysosomal membrane digestion-stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 21, 81–103 (2004).

    Article  CAS  Google Scholar 

  47. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Sturley, S. L., Patterson, M. C., Balch, W. & Liscum, L. The pathophysiology and mechanisms of NP-C disease. Biochim. Biophys. Acta 1685, 83–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Friedland, N., Liou, H. L., Lobel, P. & Stock, A. M. Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc. Natl Acad. Sci. USA 100, 2512–2517 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pagano, R. E. Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. Phil. Trans. R. Soc. Lond. B 358, 885–891 (2003).

    Article  CAS  Google Scholar 

  51. Stefkova, J., Poledne, R. & Hubacek, J. A. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol. Res. 53, 235–243 (2004).

    CAS  PubMed  Google Scholar 

  52. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Berliner, J. A., Subbanagounder, G., Leitinger, N., Watson, A. D. & Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med. 11, 142–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Glass, C. K. & Witztum, J. L. Atherosclerosis. The road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Brown, M. S. & Goldstein, J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983).

    Article  CAS  PubMed  Google Scholar 

  57. Kruth, H. S. et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 280, 2352–2360 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Buton, X. et al. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which LDL-cholesteryl ester hydrolysis exceeds LDL protein degradation. J. Biol. Chem. 274, 32112–32121 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Sakr, S. W. et al. The uptake and degradation of matrix-bound lipoproteins by macrophages require an intact actin cytoskeleton, Rho family GTPases, and myosin ATPase activity. J. Biol. Chem. 276, 37649–37658 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Qin, C., Nagao, T., Grosheva, I., Maxfield, F. R. & Pierini, L. M. Elevated plasma membrane cholesterol content alters macrophage signaling and function. Arterioscler. Thromb. Vasc. Biol (in the press).

  61. Gerrity, R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103, 181–190 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tabas, I. Nonoxidative modifications of lipoproteins in atherogenesis. Annu. Rev. Nutr. 19, 123–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki, H. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Febbraio, M., Hajjar, D. P. & Silverstein, R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moore, K. J. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J. Clin. Invest. 115, 2192–2201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, K. J. & Fisher, E. A. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr. Opin. Clin. Nutr. Metab. Care 8, 139–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Twickler, T., Dallinga-Thie, G. M., Chapman, M. J. & Cohn, J. S. Remnant lipoproteins and atherosclerosis. Curr. Atheroscler. Rep. 7, 140–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Arai, S. et al. A role for the apoptosis inhibitory factor AIM/Spa/Api6 in atherosclerosis development. Cell Metabolism 1, 201–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Libby, P. & Clinton, S. K. The role of macrophages in atherosclerosis. Curr. Opin. Lipidol. 4, 355–363 (1993).

    Article  CAS  Google Scholar 

  70. Abrams, J. Clinical practice. Chronic stable angina. N. Engl. J. Med. 352, 2524–2533 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Aikawa, M. & Libby, P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc. Pathol. 13, 125–138 (2004).

    Article  PubMed  Google Scholar 

  72. Shah, P. K. Insights into the molecular mechanisms of plaque rupture and thrombosis. Indian Heart J. 57, 21–30 (2005).

    PubMed  Google Scholar 

  73. Corti, R., Hutter, R., Badimon, J. J. & Fuster, V. Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J. Thromb. Thrombolysis 17, 35–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Virmani, R., Burke, A. P., Kolodgie, F. D. & Farb, A. Vulnerable plaque: the pathology of unstable coronary lesions. J. Interv. Cardiol. 15, 439–446 (2002).

    Article  PubMed  Google Scholar 

  75. Libby, P. et al. Macrophages and atherosclerotic plaque stability. Curr. Opin. Lipidol. 7, 330–335 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Geng, Y. J. & Libby, P. Progression of atheroma: a struggle between death and procreation. Arterioscler. Thromb. Vasc. Biol. 22, 1370–1380 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Tabas, I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 11 (Suppl. 1), S12–S16 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis. The importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Kockx, M. M. Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler. Thromb. Vasc. Biol. 18, 1519–1522 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Nhan, T. Q., Liles, W. C. & Schwartz, S. M. Role of caspases in death and survival of the plaque macrophage. Arterioscler. Thromb. Vasc. Biol. 25, 895–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Li, Y. et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem. 279, 37030–37039 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol. 5, 781–792 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kaufman, R. J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 1389–1398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Feng, B. et al. Niemann–Pick C heterozygosity confers resistance to lesional necrosis and macrophage apoptosis in murine atherosclerosis. Proc. Natl Acad. Sci. USA 100, 10423–10428 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, J., Lhotak, S., Hilditch, B. A. & Austin, R. C. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: Model of NK-κB- and Map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Schroeder, F. Fluorescence probes in metastatic B16 melanoma membranes. Biochim. Biophys. Acta 776, 299–312 (1984).

    Article  CAS  PubMed  Google Scholar 

  89. Mo, H. & Elson, C. E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. 229, 567–585 (2004).

    Article  CAS  Google Scholar 

  90. Vaughan, C. J. & Gotto, A. M. Jr. Update on statins: 2003. Circulation 110, 886–892 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Abad-Rodriguez, J. et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167, 953–960 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. London, E. & Brown, D. A. Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508, 182–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, J. & Feigenson, G. W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76, 2142–2157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McConnell, H. M. & Radhakrishnan, A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Brown, D. A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80, 2775–2788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Megha & London, E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10004 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, T. Y. & Silvius, J. R. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nakamura, K. et al. Expression and regulation of multiple murine ATP-binding cassette transporter G1 mRNAs/isoforms that stimulate cellular cholesterol efflux to high density lipoprotein. J. Biol. Chem. 279, 45980–45989 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick R. Maxfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxfield, F., Tabas, I. Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005). https://doi.org/10.1038/nature04399

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04399

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing