Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glutamate receptors at atomic resolution

Abstract

At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modular organization of a glutamate receptor.
Figure 2: Conserved structural elements in the agonist-binding site of iGluRs.
Figure 3: Solvent-accessible surfaces of the ligand-binding cavity in iGluR agonist crystal structures.
Figure 4: Activation of iGluR gating, resulting from agonist-induced expansion of the ligand-binding core dimer.
Figure 5: The pore region of the KcsA potassium channel used as a template to map the results of site-directed mutagenesis on iGluR channel block by polyamines.

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Mayer, M. L. & Westbrook, G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Collingridge, G. L. & Lester, R. A. J. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 41, 143–210 (1989).

    CAS  PubMed  Google Scholar 

  4. Collingridge, G. L. & Bliss, T. V. Memories of NMDA receptors and LTP. Trends Neurosci. 18, 54–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principle neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Lerma, J. Roles and rules of kainate receptors in synaptic transmission. Nature Rev. Neurosci. 4, 481–495 (2003).

    Article  CAS  Google Scholar 

  7. Perl, T. M. et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 322, 1775–1780 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Watkins, J. C. & Jane, D. E. The glutamate story. Br. J. Pharmacol. 147 Suppl 1, S100–S108 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hollmann, M. in Ionotropic Glutamate Receptors in the CNS (eds Jonas, P. & Monyer, H.) 3–98 (Springer, Berlin, 1999).

    Book  Google Scholar 

  10. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Puchalski, R. B. et al. Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13, 131–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Ayalon, G. & Stern-Bach, Y. Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Ayalon, G., Segev, E., Elgavish, S. & Stern-Bach, Y. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J. Biol. Chem. 280, 15053–15060 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perin-Dureau, F., Rachline, J., Neyton, J. & Paoletti, P. Mapping the binding site of the neuroprotectant ifenprodil on NMDA receptors. J. Neurosci. 22, 5955–5965 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masuko, T. et al. A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. Mol. Pharmacol. 55, 957–969 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Paoletti, P. et al. Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911–925 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Pasternack, A. et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J. Biol. Chem. 277, 49662–49667 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Stern-Bach, Y. et al. Agonist-selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid binding proteins. Neuron 13, 1345–1357 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Kuusinen, A., Arvola, M. & Keinanen, K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14, 6327–6332 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, G. Q., Sun, Y., Jin, R. & Gouaux, E. Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Sci. 7, 2623–2630 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Panchenko, V. A., Glasser, C. R. & Mayer, M. L. Structural similarities between glutamate receptor channels and K+ channels examined by scanning mutagenesis. J. Gen. Physiol. 117, 345–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuner, T., Seeburg, P. H. & Guy, H. R. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci. 26, 27–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, G. Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Sobolevsky, A. I., Yelshansky, M. V. & Wollmuth, L. P. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Soderling, T. R. & Derkach, V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Tavalin, S. J. et al. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22, 3044–3051 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vissel, B., Krupp, J. J., Heinemann, S. F. & Westbrook, G. L. Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol. Pharmacol. 61, 595–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Mano, I., Lamed, Y. & Teichberg, V. I. A venus flytrap mechanism for activation and desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors. J. Biol. Chem. 271, 15299–15302 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Quiocho, F. A. & Ledvina, P. S. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20, 17–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Mayer, M. L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Watkins, J. C., Krogsgaard-Larsen, P. & Honoré, T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11, 25–33 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of NR1 ligand-binding core. EMBO J. 22, 1–13 (2003).

    Article  Google Scholar 

  36. Mayer, M. L. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45, 539–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Jin, R., Banke, T. G., Mayer, M. L., Traynelis, S. F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nature Neurosci. 6, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Hogner, A. et al. Structural basis for AMPA receptor activation and ligand selectivity: Crystal structures of five agonist complexes with the GluR2 ligand-binding core. J. Mol. Biol. 322, 93–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mayer, M. L., Ghosal, A. K., Dolman, N. P. & Jane, D. E. Crystal structures of the kainate receptor GluR5 ligand binding core dimer with novel GluR5 selective antagonists. J. Neurosci. 26, 2852–2861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Colquhoun, D. & Ogden, D. C. Activation of ion channels in the frog end-plate by high concentrations of acetylcholine. J. Physiol. (Lond.) 395, 131–159 (1988).

    Article  CAS  Google Scholar 

  42. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Armstrong, N., Mayer, M. & Gouaux, E. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proc. Natl Acad. Sci. USA 100, 5736–5741 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inanobe, A., Furukawa, H. & Gouaux, E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Erreger, K. et al. Mechanism of partial agonism at NMDA receptors for a conformationally restricted glutamate analog. J. Neurosci. 25, 7858–7866 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, P. E. et al. Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol. Pharmacol. 67, 1470–1484 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Furukawa, H., Singh, S. K., Mancusso, R. & Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Mamonova, T., Hespenheide, B., Straub, R., Thorpe, M. F. & Kurnikova, M. Protein flexibility using constraints from molecular dynamics simulations. Phys. Biol. 2, S137–S147 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Arinaminpathy, Y., Sansom, M. S. & Biggin, P. C. Binding site flexibility: Molecular simulation of partial and full agonists with a glutamate receptor. Mol. Pharmacol. 69, 5–12 (2006).

    Google Scholar 

  50. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nature Neurosci. 6, 144–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Schorge, S., Elenes, S. & Colquhoun, D. Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J. Physiol. 569, 395–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Horning, M. S. & Mayer, M. L. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci. 16, 6634–6647 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jin, R. et al. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25, 9027–9036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C. & Wollmuth, L. P. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J. Neurosci. 24, 4728–4736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holm, M. M. et al. A binding site tyrosine shapes desensitization kinetics and agonist potency at GluR2. A mutagenic, kinetic, and crystallographic study. J. Biol. Chem. 280, 35469–35476 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Lester, R. A. J., Clements, J. D., Westbrook, G. L. & Jahr, C. E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Laurie, D. J. & Seeburg, P. H. Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 268, 335–345 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Kuner, T., Wollmuth, L. P., Karlin, A., Seeburg, P. H. & Sakmann, B. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17, 343–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Beck, C., Wollmuth, L. P., Seeburg, P. H., Sakmann, B. & Kuner, T. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22, 559–570 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Sobolevsky, A. I., Yelshansky, M. V. & Wollmuth, L. P. State-dependent changes in the electrostatic potential in the pore of a GluR channel. Biophys. J. 88, 235–242 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Wollmuth, L. P. & Sobolevsky, A. I. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27, 321–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schorge, S. & Colquhoun, D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J. Neurosci. 23, 1151–1158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Balannik, V., Menniti, F. S., Paternain, A. V., Lerma, J. & Stern-Bach, Y. Molecular mechanism of AMPA receptor noncompetitive antagonism. Neuron 48, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Lipton, S. A. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nature Rev. Drug Discov. 5, 160–170 (2006).

    Article  CAS  Google Scholar 

  70. Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Kohda, K., Wang, Y. & Yuzaki, M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nature Neurosci. 3, 315–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Klein, R. M. & Howe, J. R. Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J. Neurosci. 24, 4941–4951 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Turetsky, D., Garringer, E. & Patneau, D. K. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J. Neurosci. 25, 7438–7448 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is supported by the intramural research programme of NICHD, NIH, DHHS. Synchotron diffraction data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprints and permissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, M. Glutamate receptors at atomic resolution. Nature 440, 456–462 (2006). https://doi.org/10.1038/nature04709

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04709

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing