Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversal of pathological pain through specific spinal GABAA receptor subtypes

Abstract

Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment1,2. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology3,4,5,6,7. Facilitation of spinal γ-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABAA receptors should be able to compensate for this loss8,9. With the use of GABAA-receptor point-mutated knock-in mice in which specific GABAA receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands10,11,12, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABAA receptors containing the α2 and/or α3 subunits. We show that their selective activation by the non-sedative (‘α1-sparing’) benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antinociceptive effects of spinal diazepam in different mouse pain models.
Figure 2: GABA A receptor α subunits in capsaicin-sensitive primary afferent DRG neurons and in intrinsic dorsal horn neurons.
Figure 3: Anti-hyperalgesic effects of the non-sedative benzodiazepine site ligand L-838,417 in rats.
Figure 4: Effects of L-838,417 (1 mg kg -1 i.p.) on the supraspinal representation of pain.

Similar content being viewed by others

References

  1. Sandkühler, J. Learning and memory in pain pathways. Pain 88, 113–118 (2000)

    Article  Google Scholar 

  2. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Ahmadi, S., Lippross, S., Neuhuber, W. L. & Zeilhofer, H. U. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nature Neurosci. 5, 34–40 (2002)

    Article  CAS  Google Scholar 

  4. Harvey, R. J. et al. GlyRα3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Moore, K. A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002)

    Article  CAS  Google Scholar 

  6. Coull, J. A. et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Scholz, J. et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J. Neurosci. 25, 7317–7323 (2005)

    Article  CAS  Google Scholar 

  9. Malan, T. P., Mata, H. P. & Porreca, F. Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96, 1161–1167 (2002)

    Article  CAS  Google Scholar 

  10. Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401, 796–800 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Löw, K. et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134 (2000)

    Article  ADS  Google Scholar 

  12. Crestani, F. et al. Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc. Natl Acad. Sci. USA 99, 8980–8985 (2002)

    Article  ADS  CAS  Google Scholar 

  13. McKernan, R. M. et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nature Neurosci. 3, 587–592 (2000)

    Article  CAS  Google Scholar 

  14. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965)

    Article  ADS  CAS  Google Scholar 

  15. Enna, S. J. & McCarson, K. E. The role of GABA in the mediation and perception of pain. Adv. Pharmacol. 54, 1–27 (2006)

    Article  CAS  Google Scholar 

  16. Barnard, E. A. et al. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313 (1998)

    CAS  PubMed  Google Scholar 

  17. Wieland, H. A., Lüddens, H. & Seeburg, P. H. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem. 267, 1426–1429 (1992)

    CAS  PubMed  Google Scholar 

  18. Dias, R. et al. Evidence for a significant role of α3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J. Neurosci. 25, 10682–10688 (2005)

    Article  CAS  Google Scholar 

  19. Rudomin, P. & Schmidt, R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129, 1–37 (1999)

    Article  CAS  Google Scholar 

  20. Bohlhalter, S., Weinmann, O., Möhler, H. & Fritschy, J. M. Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J. Neurosci. 16, 283–297 (1996)

    Article  CAS  Google Scholar 

  21. Ma, W., Saunders, P. A., Somogyi, R., Poulter, M. O. & Barker, J. L. Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J. Comp. Neurol. 338, 337–359 (1993)

    Article  CAS  Google Scholar 

  22. Scott-Stevens, P., Atack, J. R., Sohal, B. & Worboys, P. Rodent pharmacokinetics and receptor occupancy of the GABAA receptor subtype selective benzodiazepine site ligand L-838417. Biopharm. Drug Dispos. 26, 13–20 (2005)

    Article  CAS  Google Scholar 

  23. Brooks, J. & Tracey, I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J. Anat. 207, 19–33 (2005)

    Article  Google Scholar 

  24. Bushnell, M. C. & Apkarian, A. V. in Wall and Melzack’s Textbook of Pain (ed. McMahon, S. B. & Koltzenburg, M.) 107–124 (Elsevier Churchill Livingstone, London, 2006)

    Book  Google Scholar 

  25. Jasmin, L., Rabkin, S. D., Granato, A., Boudah, A. & Ohara, P. T. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424, 316–320 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Harris, J. A. & Westbrook, R. F. Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats. Behav. Neurosci. 109, 295–304 (1995)

    Article  CAS  Google Scholar 

  27. Fritschy, J. M. & Möhler, H. GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995)

    Article  CAS  Google Scholar 

  28. Ator, N. A. Contributions of GABAA receptor subtype selectivity to abuse liability and dependence potential of pharmacological treatments for anxiety and sleep disorders. CNS Spectr. 10, 31–39 (2005)

    Article  Google Scholar 

  29. van Rijnsoever, C. et al. Requirement of α5-GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J. Neurosci. 24, 6785–6790 (2004)

    Article  CAS  Google Scholar 

  30. Keller, A. F., Coull, J. A., Chery, N., Poisbeau, P. & de Koninck, Y. Region-specific developmental specialization of GABA–glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J. Neurosci. 21, 7871–7880 (2001)

    Article  CAS  Google Scholar 

  31. Depner, U. B., Reinscheid, R. K., Takeshima, H., Brune, K. & Zeilhofer, H. U. Normal sensitivity to acute pain, but increased inflammatory hyperalgesia in mice lacking the nociceptin precursor polypeptide or the nociceptin receptor. Eur. J. Neurosci. 17, 2381–2387 (2003)

    Article  Google Scholar 

  32. Dubuisson, D. & Dennis, S. G. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4, 161–174 (1977)

    Article  CAS  Google Scholar 

  33. Hargreaves, K., Dubner, R., Brown, F., Flores, C. & Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88 (1988)

    Article  CAS  Google Scholar 

  34. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988)

    Article  CAS  Google Scholar 

  35. Bonetti, E. P. et al. Ro 15–4513: partial inverse agonism at the BZR and interaction with ethanol. Pharmacol. Biochem. Behav. 31, 733–749 (1988)

    Article  CAS  Google Scholar 

  36. Zeilhofer, H. U., Kress, M. & Swandulla, D. Fractional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurones. J. Physiol. (Lond.) 503, 67–78 (1997)

    Article  CAS  Google Scholar 

  37. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 4th edn (Academic, San Diego, 1998)

    Google Scholar 

  38. Hennig, J., Nauerth, A. & Friedburg, H. RARE imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3, 823–833 (1986)

    Article  CAS  Google Scholar 

  39. Hess, A., Sergejeva, M., Budinsky, L., Zeilhofer, H. U. & Brune, K. Imaging of hyperalgesia in rats by functional MRI. Eur. J. Pain 11, 109–119 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Rudin for critical reading of the manuscript, and R. Keist, I. Camenisch, B. Layh, S. Gabriel, C. Sidler and S. John for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft to H.U.Z. and A.H., by the Bundesministerium für Bildung und Forschung (migraine and BCCN) to A.H., by grants from the Schweizerischer Nationalfonds to J.M.F., H.M., U.R. and H.U.Z., the NCCR Neural Plasticity and Repair, and by the Doerenkamp Foundation for Innovations in Animal and Consumer Protection to K.B.

Author Contributions J.K., R.W., K.H., H.R. and U.B.Z. conducted the behavioural experiments. S.A. and J.B. made the electrophysiological recordings and analyses. M.S., A.H. and K.B. performed the fMRI study. J.M.F. made the morphological analyses. U.R. and H.M. provided the four lines of genetically modified mice. H.M. suggested experiments with L-838,417. H.U.Z. initiated the research, analysed behavioural and electrophysiological data and wrote the manuscript. All authors made comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanns Ulrich Zeilhofer.

Supplementary information

Supplementary Information

The file contains Supplementary Methods with additional references, Supplementary Figures 1-3 with Legends and Supplementary Tables 1-2. (PDF 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knabl, J., Witschi, R., Hösl, K. et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334 (2008). https://doi.org/10.1038/nature06493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing