Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA

Abstract

Peptide nucleic acid (PNA) is a DNA mimic with attractive properties for developing improved gene-targeted antisense agents. To test this potential of PNA in bacteria, PNAs were designed to target the start codon regions of the Escherichia coli β-galactosidase and β-lactamase genes. Dose-dependent and specific gene inhibition was observed in vitro using low nanomolar PNA concentrations and in vivo using low micromolar concentrations. Inhibition was more efficient for a permeable E. coli strain relative to wild-type K-12. The potency of the anti-β-lactamase PNAs was abolished by a six base substitution, and inhibition could be re-established using a PNA with compensating base changes. Antisense inhibition of the β-lactamase gene was sufficient to sensitize resistant cells to the antibiotic ampicillin. The results demonstrate gene- and sequence-specific antisense inhibition in E. coli and open possibilities for anti-sense antibacterial drugs and gene function analyses in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monia, B.P., Johnston, J.F., Geiger, T., Muller, M., and Fabbro, D. 1996. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med. 2: 668–675.

    Article  CAS  Google Scholar 

  2. Nyce, J.W. and Metzger, W.J. 1997. DNA antisense therapy for asthma in an animal model. Nature 385: 721–725.

    Article  CAS  Google Scholar 

  3. Simons, R.W. and Kleckner, N. 1998. Biological regulation by antisense RNA in prokaryotes. Annu. Rev. Genet 22: 567–600.

    Article  Google Scholar 

  4. Jayaraman, K., McParland, K. Miller, P., and Ts'o, P.O. 1981. Selective inhibition of Escherichia coli protein synthesis and growth by nonionic oligonucleotides complementary to the 3′ end of 16S rRNA. Proc. Natl. Acad. Sci. USA 78: 1537–1541.

    Article  CAS  Google Scholar 

  5. Gasparro, F.P., Edelson, R.L., O'Malley, M.E. Ugent, S.J., and Wong, H.H. 1991. Photoactivatable antisense DNA: suppression of ampicillin resistance in normally resistant Escherichia coli . Antisense Res. Dev. 1: 117–140.

    Article  CAS  Google Scholar 

  6. Nielsen, P.E., Egholm, M., Berg, R.H., and Buchardt, O. 1991. Sequence selective recognition of DNA by strand displacement with a thyrnine-substituted polyamide. Science 254: 1497–1500.

    Article  CAS  Google Scholar 

  7. Wittung, P., Nielsen, P.E., Buchardt, O., Egholm, M. and Nordén, B. 1994. DNA-like double helix formed by peptide nucleic acid. Nature 368: 561–563.

    Article  CAS  Google Scholar 

  8. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A. et al. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365: 566–568.

    Article  CAS  Google Scholar 

  9. Demidov, V., Potaman, V.N., Frank-Kamenetskii, M.D., Buchardt, O., Egholm, M., and Nielsen, P.E. 1994. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48: 1309–1313.

    Article  Google Scholar 

  10. Nielsen, P.E. and Haaima, G. 1997. Peptide nucleic acid PNA. A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 96: 73–78.

    Article  Google Scholar 

  11. Hanvey, J.C., Peffer, N.J., Bisi, J.E., Thomson, S.A., Cadilla, R., Josey, J.A. et al. 1992. Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485.

    Article  CAS  Google Scholar 

  12. Nielsen, P.E., Egholm, M., and Buchardt, O. 1994. Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149: 139–145.

    Article  CAS  Google Scholar 

  13. Bonham, M.A., Brown, S., Boyd, A.L., Brown, P.H., Bruckenstein, D.A., Hanvey, J.C. et al. 1995. An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucl. Acids Res. 23: 1197–1203.

    Article  CAS  Google Scholar 

  14. Knudsen, H. and Nielsen, P.E. 1996. Antisense properties of duplex-and triplex-forming PNAs. Nucl. Acids Res. 24: 494–500.

    Article  CAS  Google Scholar 

  15. Norton, J.C., Piatyczek, J.A., Wright, W.E., Shay, J.W., and Corey, D.R. 1996. Inhibition of human telomerase activity by peptide nucleic acid. Bio/technology 14: 615–619.

    CAS  Google Scholar 

  16. Taylor, R.W., Chinnery, P.F., Turnbull, D.M. and Lightowlers, R.N. 1997. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat. Genet. 15: 212–215.

    Article  CAS  Google Scholar 

  17. Thorson, J.S., Cornish, V.W., Barrett, J.E., Cload, S.T., Yano, T., and Schultz, P.G. A biosynthetic approach for the incorporation of unnatural amino acids into proteins. Methods Mol. Biol In press.

  18. Sekiguchi, M. and Lida, S. 1967. Mutants of Escherichia coli permeable to actinomycin. Proc. Natl. Acad. Sci. USA 58: 2315–2320.

    Article  CAS  Google Scholar 

  19. Wittung, P., Kajanus, J., Edwards, K., Nielsen, P., Nordén, B., and Malmström, B.G. 1995. Phospholipid membrane permeability of peptide nucleic acid. FEBS Lett. 365: 27–29.

    Article  CAS  Google Scholar 

  20. Gardner, A.D. 1940. Morphological effects of penicillin on bacteria. Nature 146: 837–838.

    Article  Google Scholar 

  21. Sørensen, M.A., Kurland, C.G., and Pedersen, S.J. 1989. Codon usage determines translation rate in Escherichia coli . J. Mol. Biol. 207: 365–377.

    Article  Google Scholar 

  22. Wren, B.W., Henderson, J., and Ketley, J.M. 1994. A PCR-based strategy for the rapid construction of defined bacterial deletion mutants. Biotechniques 16: 994–996.

    CAS  PubMed  Google Scholar 

  23. Christensen, L., Fitzpatrick, R., Gildea, B., Petersen, K.H., Hansen, H.F., Koch, T. et al. 1995. Solid-phase synthesis of peptide nucleic acids. Journal of Peptide Science 3: 175–183.

    Article  Google Scholar 

  24. Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY.

    Google Scholar 

  25. Kobayashi, S., Arai, S., Hayashi, S. and Sakaguchi, T. 1988. Simple assay of β-lactamase with agar medium containing a chromogenic cephalosporin, pyridini-um-2-azo-p-dimethylaniline chromophore (PADAC). Antimicrob. Agents Chemother. 32: 1040–1045.

    Article  CAS  Google Scholar 

  26. Lauer, B.A., Reller, L.B. and Mirrett, S. 1981. Comparison of acridine orange and gram strains for detection of microorganisms in cerebrospinal fluid and other clinical specimens. J. Clin. Microbiol. 14: 201–205.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, L., Nielsen, P. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol 16, 355–358 (1998). https://doi.org/10.1038/nbt0498-355

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0498-355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing