Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Use of microphysiometry for analysis of heterologous ion channels expressed in yeast

Abstract

Measurement of extracellular acidification rates by microphysiometry provides a means to analyze the function of ion channels expressed in yeast cells. These measurements depend on the proton pumping action of the H+-ATPase, a central component of the yeast plasma membrane. We used microphysiometry to analyze the activity of two ion channels expressed in yeast. In one example, an inwardly rectifying K+ channel, gpIRK1, provides a potassium uptake function when expressed in a potassium transporter-defective yeast strain. Rates of acidification in gpIRK1-expressing cells directly reflect channel function. Addition of cesium, an inhibitor of gpIRK1 activity, results in an immediate reduction in acidification rates. In a second example, expression of a nonselective cation channel, the influenza virus M2 protein, is believed to interfere with the maintenance of the electrochemical proton gradient by the H+-ATPase. In cells expressing the M2 channel, addition of inhibitors increases the rate of proton extrusion. Moreover, functional differences between two M2 inhibitors, amantadine and BL-1743, are distinguished by the microphysiometer. This application demonstrates the utility of the microphysiometer for functional studies of ion channels; it is adaptable to a screening process for compounds that modulate ion channel activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iverson, L.E., Tanouye, M.A., Lester, H.A., Davidson, N., and Rudy, B. 1988. Expression of A-type potassium channels from Shaker cDNAs. Proc. Natl. Acad. Sci. USA 85: 5723–5727.

    Article  CAS  Google Scholar 

  2. Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N., and Jan, L.Y. 1987. Cloning of genomic and complementary cDNA from Shaker, a putative potassium channel gene from Drosophila. Science 237: 749–753.

    Article  CAS  Google Scholar 

  3. Timpe, L.C., Schwarz, T.L., Tempel, B.L., Papazian, D.M., Jan, Y.N., and Jan, L.Y. 1988. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331: 143–145.

    Article  CAS  Google Scholar 

  4. Hafeman, D.G., Parce, J.W., and McConnell, H.M. 1988 Light-addressable potentiometric sensor for biochemical systems. Science 240: 1182–1185.

    Article  CAS  Google Scholar 

  5. McConnell, H.M., Owicki, J.C., Parce, J.W., Miller, D.L., Baxter, G.T., Wada, H.G., and Pitchford, S. 1992. The cytosensor microphysiometer: biological applications of silicon technology. Science 257: 1906–1912.

    Article  CAS  Google Scholar 

  6. Owicki, J.C., Bousse, L.J., Hafeman, D.G., Kirk, G.L., Olson, J.D., Wada, H.G., and Parce, J.W. 1994. The Light-Addressable Potentiometric Sensor: principles and biological applications. Annu. Rev. Biophys. Biomol. Struct. 23: 87–113.

    Article  CAS  Google Scholar 

  7. Miller, D.L., Olson, J.C., Parce, J.W., and Owicki, J.C. 1993. Cholinergic stimulation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophys. J. 54: 813–823.

    Article  Google Scholar 

  8. Miller, D.L., and Owicki, J.C. 1994. Long term exposure of TE671 cells to PMA induces a change in metabolic and calcium responses to nACHR activation. Canadian J. of Physiology and Pharmacology. 72 (suppl. 1) 378.

    Google Scholar 

  9. Hahnenberger, K.M., Jia, Z.-P., and Young, P.G. 1996. Functional expression of the Schizosaccharomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae . Proc. Natl. Acad. Sci. USA 93: 5031–5036.

    Article  CAS  Google Scholar 

  10. Haworth, R.S., Lemire, B.D., Crandall, D., Cragoe, E.J. Jr., and Fliegel, L. 1991. Characterization of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae . Biochim. Biophys. Acta 1098: 79–89.

    Article  CAS  Google Scholar 

  11. Serrano, R. 1991 Transport across yeast vacuolar and plasma membranes, pp. 523–585 in The molecular biology of the yeast Saccharomyces. Broach, J.R. et al. (eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  12. Gaber, R.F. 1992 Molecular genetics of yeast ion transport. Intl. Rev. Cytol. 137A: 299–353.

    Article  CAS  Google Scholar 

  13. Haro, R., Garciadeblas, B., and Rodriguez-Navarro, A. 1991. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 291: 189–191.

    Article  CAS  Google Scholar 

  14. Garciadeblas, B., Rubio, F., Quintero, F.J., Banuelos, M.A., Haro, R., and Rodriguez-Navarro, A. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae . Mol. Gen. Genet. 236: 363–368.

    Article  CAS  Google Scholar 

  15. Bussey, H., Boone, C., Zhu, H., Vernet, T., Whiteway, M., and Thomas, D.Y. 1990. Genetic and molecular approaches to synthesis and action of the yeast killer toxin. Experientia 46: 193–200.

    Article  CAS  Google Scholar 

  16. Kagan, B. 1983. Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302: 709–711.

    Article  CAS  Google Scholar 

  17. Martinac, B., Zhu, H., Kubalski, A., Zhou, X., Culbertson, M., Bussey, H., and Kung, C. 1990 Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. Proc. Natl. Acad. Sci. USA 87: 6228–6232.

    Article  CAS  Google Scholar 

  18. Kubo, Y., Baldwin, T.J., Jan, Y.N., and Jan, L.Y. 1993. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362: 127–133.

    Article  CAS  Google Scholar 

  19. Pinto, L.H., Holsinger, L.J., and Lamb, R.A. 1992. Influenza virus M2 protein has ion channel activity. Cell 69: 517–528.

    Article  CAS  Google Scholar 

  20. Tu, Q., Pinto, L., Lou, G., Shaungessy, M.A., Mullaney, D., Kurtz, S., Krystal, M., and Lamb, R.A. 1996. Characterization of inhibition of M2 ion channel activity by BL-1743, an inhibitor of influenza A virus. J. Virology. In press.

  21. Tang, W., Ruknudin, A., Yang, W.-P., Shaw, S.-Y., Knickerbocker, A., and Kurtz, S. 1995. Functional expression of a vertebrate inwardly rectifying K+ channel in yeast. Mol. Biol. Cell 6: 1231–1240.

    Article  CAS  Google Scholar 

  22. Kurtz, S., Luo, G., Hahnenberger, K.M., Brooks, C., Gecha, O., Ingalls, K., Numata, K., and Krystal, M. 1995. Growth impairment resulting from expression of Influenza virus M2 protein in yeast: identification of an inhibitor of M2. Antimicrob. Agents Chemother. 39: 2204–2209.

    Article  CAS  Google Scholar 

  23. Davies, W.L., Grunet, R.R., Haff, R.F, McGahen, J.W., Neumayer, E.M., Paulshock, M., Watts, J.C., Wood, T.R., Hermann, E.C., and Hoffmann, C.E. 1964. Antiviral Activity of 1-Adamantadine (Amantadine). Science 144: 862–863.

    Article  CAS  Google Scholar 

  24. Kamb, A., Iverson, L.E., and Tanouye, M.A. 1987. Molecular characterization of shaker, a Drosophila gene that encodes a potassium channel. Cell 50: 405–413.

    Article  CAS  Google Scholar 

  25. Butler, A., Tsunoda, S., McCobb, D.P., Wei, A., and Salkoff, L. 1993. mSlo, a complex mouse gene encoding Maxi calcium activated potassium channels. Science 261: 221–224.

    Article  CAS  Google Scholar 

  26. Holsinger, L.J. and Lamb, R.A. 1991. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183: 32–43.

    Article  CAS  Google Scholar 

  27. Jan, L.Y. and Jan, Y.N. 1994. Potassium channels and their evolving gates. Nature 371: 119–122.

    Article  CAS  Google Scholar 

  28. Bertl, A., Andersen, J.A., Slayman, C.L, and Gaber, R.F. 1995. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane proteins: Characterization of KAT1, an inward-rectifier K+ channel from Arabidopsis thaliana, and comparison with endogenous yeast channels and carriers. Proc. Natl. Acad. Sci. USA 92: 2701–2705.

    Article  CAS  Google Scholar 

  29. Sherman, F., Fink, G.R. and Hicks, J.B. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahnenberger, K., Krystal, M., Esposito, K. et al. Use of microphysiometry for analysis of heterologous ion channels expressed in yeast. Nat Biotechnol 14, 880–883 (1996). https://doi.org/10.1038/nbt0796-880

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0796-880

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing