Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Peptide modulators of protein–protein interactions in intracellular signaling

Abstract

Signal transduction cascades involve multiple enzymes and are orchestrated by selective protein–protein interactions that are essential for the progression of intracellular signaling events. Modulators of these protein–protein interactions have been used to dissect the role of individual components of each signaling cascade. We describe several methods that have been developed for the identification of pep-tides that inhibit the interaction between signaling proteins and hence selectively modulate their functions. Such peptide modulators provide important tools for basic research and have great potential as leads for the development of new classes of therapeutic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pawson, T. and Scott, J.D. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–2080.

    Article  CAS  PubMed  Google Scholar 

  2. Hubbard, M.J. and Cohen, P. 1993. On target with a new mechanism for the regulation of protein phosphorylation. TIBS 18: 172–177.

    CAS  PubMed  Google Scholar 

  3. Mochly-Rosen, D., Smith, B.L., Chen, C.H., Disatnik, M.H. and Ron, D. 1995. Interaction of protein kinase C with RACK1, a receptor for activated C-kinase: a role in beta protein kinase C mediated signal transduction. Biochem. Soc. Trans. 23: 596–600.

    Article  CAS  PubMed  Google Scholar 

  4. Koch, W.J., Inglese, J., Stone, W.C. and Lefkowitz, R.J. 1993. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J. Biol. Chem. 268: 8256–8260.

    CAS  PubMed  Google Scholar 

  5. Pitcher, J.A., Inglese, J., Higgins, J.B., Arriza, J.L., Casey, P.J., Kim, C. et al. 1992. Role of βγ subunits of G proteins in targeting the b-adrenergic receptor kinase to membrane-bound receptors. Science 257: 1264–1267.

    Article  CAS  PubMed  Google Scholar 

  6. Boekhoff, I., Inglese, J., Schleicher, S., Koch, W.J., Lefkowitz, R.J. and Breer, H. 1994. Olfactory desensitization requires membrane targeting of receptor kinase mediated by beta gamma-subunits of heterotrimeric G proteins. J. Biol. Chem. 269: 37–40.

    CAS  PubMed  Google Scholar 

  7. Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249: 386–390.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J., Ma, Q.N. and Lam,K.S. 1994. Identifying substrate motifs of protein kinases by a random library approach. Biochemistry 33: 14825–14833.

    Article  CAS  PubMed  Google Scholar 

  9. Nishi, T., Budde,R.J., McMurray, J.S., Obeyesekere, N.U., Safdar, N., Levin, V.A. et al. 1996. Tight-binding inhibitory sequences against pp60(c-src) identified using a random 15-amino-acid peptide library. FEBS Lett 399: 237–240.

    Article  CAS  PubMed  Google Scholar 

  10. Nevalainen, L.T., Aoyama, T., Ikura, M., Crivici, A., Yan, H., Chua, N.H. et al. 1997 Characterization of novel calmodulin-binding peptides with distinct inhibitory effects on calmodulin-dependent enzymes. Biochem. J. 321: 107–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fantl, W.J., Escobedo, J.A., Martin, G.A., Turck, C.W., del Rosario, M., McCormick, F. et al. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69: 413–423.

    Article  CAS  PubMed  Google Scholar 

  12. Alonso, G., Koegl, M., Mazurenko, N. and Courtneidge, S.A. 1995. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J. Biol. Chem. 270: 9840–9848.

    Article  CAS  PubMed  Google Scholar 

  13. Wange, R.L., Isakov, N., Burke, T.R.Jr., Otaka, A., Roller, P.P., Watts, J.D. et al. 1995. F2(Pmp)2-TAM zeta 3, a novel competitive inhibitor of the binding of ZAP- 32. 70 to the T cell antigen receptor, blocks early T cell signaling. J. Biol. Chem. 270: 944–948.

    Article  CAS  PubMed  Google Scholar 

  14. Songyang, Z., Shoelson,S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser,W.G. et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778.

    Article  CAS  PubMed  Google Scholar 

  15. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers,H. et al.1997. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91: 961–971.

    Article  CAS  PubMed  Google Scholar 

  16. Songyang, Z., Fanning, A.S., Fu, C., Xu,J., Marfatia, S.M., Chishti, A.H et al. 1997. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275: 73–77.

    Article  CAS  PubMed  Google Scholar 

  17. Grabs, D., Slepnev, V.I., Songyang, Z., David, C., Lynch, M., Cantley, L.C. et al. 1997. The SH3 domain of amphiphysin binds the proline-rich domain of dynaminat a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272: 13419–13425.

    Article  CAS  PubMed  Google Scholar 

  18. Nishikawa, K., Toker, A., Johannes, F.J., Songyang, Z., and Cantley, L.C. 1997. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272: 952–960.

    Article  CAS  PubMed  Google Scholar 

  19. Rickles, R.J., Botfield, M.C., Zhou, X.M., Henry, P.A., Brugge, J.S., and Zoller, M.J. 1995. Phage display selection of ligand residues important for Src homolo-gy 3 domain binding specificity. Proc. Natl. Acad. Sci. USA 92: 10909–10913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmitz, R., Baumann, G. and Gram, H. 1996. Catalytic specificity of phospho-tyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J. Mol. Biol. 260: 664–677.

    Article  CAS  PubMed  Google Scholar 

  21. Alexandropoulos, K., Cheng, G. and Baltimore, D. 1995. Proline-rich sequencesthat bind to Src homology 3 domains with individual specificities. Proc. Natl. Acad. Sci. USA 92: 3110–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stauffer, T.R., Martenson, C.H., Rider, J.E., Kay, B.K., and Meyer, T. 1997. Inhibition of Lyn function in mast cell activation by SH3 peptides. Biochemistry 36: 9388–9394.

    Article  CAS  PubMed  Google Scholar 

  23. Carr, D.W., Hausken, Z.E., Fraser, I.D., Stofko-Hahn, R.E., and Scott, J.D. 1992. Association of the type II cAMP-dependent protein kinase with a human thyroid Rll-anchoring protein. Cloning and characterization of the Rll-binding domain. J. Biol. Chem. 267: 13376–13382.

    Google Scholar 

  24. Hirsch, A.H., Glantz,S.B., Li, Y., You,Y., and Rubin, C.S. 1992. Cloning and expression of an intron-less gene for AKAP 75, an anchor protein for the regulatory subunit of cAMP-dependent protein kinase II beta. J. Biol. Chem. 267: 2131–2134.

    CAS  PubMed  Google Scholar 

  25. Carr, D.W., Stofko-Hahn, R.E., Fraser, I.D., Cone, R.D., and Scott, J.D. 1992. Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J. Biol. Chem. 267: 16816–16823.

    Google Scholar 

  26. Lester, L.B., Langeberg, L.K., and Scott, J.D. 1997. Anchoring of protein kinase A facilitates hormone-mediated insulin secretion. Proc. Natl. Acad. Sci. USA 94: 14942–14947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vijayaraghavan, S., Goueli, S.A., Davey, M.P., and Carr, D.W. 1997. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J. Biol. Chem. 272: 4747–4752.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenmund C., Carr, D.W., Bergeson, S.E., Nilaver, G., Scott, J.D., and Westbrook, G.L 1994. Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368: 853–856.

    Article  CAS  PubMed  Google Scholar 

  29. Aitken, A., Ellis, C.A., Harris, A., Sellers, L.A., and Toker, A. 1990. Kinase and neu-rotransmitters [letter]. Nature 344: 594.

    Article  CAS  PubMed  Google Scholar 

  30. Mochly-Rosen, D., Khaner, H., and Lopez, J. 1991. Identification of intracellular receptor proteins for activated protein kinase C. Proc. Natl. Acad. Sci. USA 88: 3997–4000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ron, D. and Mochly-Rosen, D. 1994. Agonists and antagonists of protein kinase C function, derived from its binding proteins. J. Biol. Chem. 269: 21395–21398.

    CAS  PubMed  Google Scholar 

  32. Mochly-Rosen, D., Miller, K.G., Scheller, R.H., Lopez, J., and Smith, B.L. 1992. p65 fragments, homologous to the C2 region of protein kinase C, bind to the intracellular receptors for protein kinase C. Biochemistry 31: 8120–8124.

    Article  CAS  PubMed  Google Scholar 

  33. Disatnik, M.H., Hernandez-Sotomayor, S.M., Jones, G., Carpenter, G., and Mochly-Rosen, D. 1994. Phospholipase C-gamma 1 binding to intracellular receptors for activated protein kinase C. Proc. Natl. Acad. Sci. USA 91: 559–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ron, D., Luo, J., and Mochly-Rosen, D. 1995. C2 region-derived peptides inhibit translocation and function of beta protein kinase C in vivo. J. Biol. Chem. 270: 24180–24187.

    Article  CAS  PubMed  Google Scholar 

  35. Yedovitzky, M., Mochly-Rosen, D., Johnson, J.A., Gray, M.O., Ron, D., Abramovitch, E. et al. 1997. Translocation inhibitors define specificity of protein kinase C isoenzymes in pancreatic beta-cells. J. Biol. Chem. 272: 1417–1420.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Z.H., Johnson, J.A., chen, L., El-Sherif, N., Mochly-Rosen, D., and Boutjdir, M. 1997. C2 region-derived peptides of beta-protein kinase C regulate cardiac Ca2+ channels. Circ. Res. 80: 720–729.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, J.A., Gray, M.O., Chen, C.H., and Mochly-Rosen, D. 1996. A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac function. J. Biol. Chem. 271: 24962–24966.

    Article  CAS  PubMed  Google Scholar 

  38. Sossin, W.S. and Schwartz, J.H. 1993. Ca2+−independent protein kinase Cs contain an amino-terminal domain similar to the C2 consensus sequence. TIBS 18: 207–208.

    CAS  PubMed  Google Scholar 

  39. Gray, M.O., Karliner, J.S., and Mochly-Rosen, D. 1997. A selective epsilon-pro-tein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J. Biol. Chem. 272: 30945–30951.

    Article  CAS  PubMed  Google Scholar 

  40. Kobe, B., Heierhorst, J., and Kemp, B.E. 1997. Intrasteric regulation of protein kinases. Adv. Second Messenger Phosphoprotein Res. 31: 29–40.

    Article  CAS  PubMed  Google Scholar 

  41. Ron, D., Chen, C.H., Caldwell, J., Jamieson L., Orr, E., and Mochly-Rosen, D. 1994. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins Proc. Natl. Acad. Sci. USA 91: 839–843.[published erratum appears 1995, Proc. Natl. Acad. Sci. USA 92:2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ron, D. and Mochly-Rosen, D. 1995. An autoregulatory region in protein kinase C: the seudoanchoring site. Proc. Natl. Acad. Sci. USA 92: 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, J.A., Gray, M.O., Karliner, J.S., Chen, C.H., and Mochly-Rosen, D. 1996. An improved permeabilization protocol for the introduction of peptides into cardiac myocytes. Application to protein kinase C research. Circ. Res. 79: 1086–1099.

    Article  CAS  PubMed  Google Scholar 

  44. O'Brian, C.A., Ward, N.E., Liskamp, R.M., de Bont, D., Earnest, L.E., van Boom, J.H. et al. 1991. A novel N-myristylated synthetic octapeptide inhibits protein kinase C activity and partially reverses murine fibrosarcoma cell resistance to adriamycin. Inest. New Drugs 9: 169–179.

    Article  CAS  Google Scholar 

  45. Verhoeven, A.J., Leusen, J.H., Kessels, G.C., Hilarius, P.M., de Bont, D.B., and Liskamp, R.M. 1993. Inhibition of neutrophil NADPH oxidase assembly by a myristoylated pseudosubstrate of protein kinase C. J. Biol. Chem. 268: 18593–18598.

    CAS  PubMed  Google Scholar 

  46. Theodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P. et al. 1995. Intraneuronal delivery of protein kinase C pseudosubstrate leads to growth cone collapse. J. Neurosci. 15: 7158–7167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Derossi, D., Joliot, A.H., Chassaing, G., and Prochiantz, A. 1994. The third helixof the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269: 10444–10450.

    CAS  PubMed  Google Scholar 

  48. Mochly-Rosen, D., Khaner, H., Lopez, J., and Smith, B.L. 1991. Intracellular receptors for activated protein kinase C. Identification of a binding site for the enzyme. J.Biol. Chem. 266: 14866–14868.

    Google Scholar 

  49. Prochiantz, A. 1998. Peptide nucleic acid smugglers. Nat. Biotechnol. 16: 819–820.

    Article  CAS  PubMed  Google Scholar 

  50. Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K. et al. 1998. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16: 857–861.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souroujon, M., Mochly-Rosen, D. Peptide modulators of protein–protein interactions in intracellular signaling. Nat Biotechnol 16, 919–924 (1998). https://doi.org/10.1038/nbt1098-919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing