Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

siRNA-mediated gene silencing in vitro and in vivo

Abstract

RNA interference is now established as an important biological strategy for gene silencing, but its application to mammalian cells has been limited by nonspecific inhibitory effects of long dsRNA on translation. Here, we describe a viral-mediated delivery mechanism that results in specific silencing of targeted genes through expression of small interfering RNA (siRNA). We establish proof of principle by markedly diminishing expression of exogenous and endogenous genes in vitro and in vivo in brain and liver, and further apply this strategy to a model system of a major class of neurodegenerative disorders, the polyglutamine diseases, to show reduced polyglutamine aggregation in cells. This viral-mediated strategy should prove generally useful in reducing expression of target genes to model biological processes or to provide therapy for dominant human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siRNA expressed from CMV promoter constructs and in vitro effects.
Figure 2: Viral vectors expressing siRNA reduce expression from transgenic and endogenous alleles in vivo.
Figure 3: siGFP gene transfer reduces Q19-eGFP expression in cell lines.
Figure 4: siRNA-mediated reduction of expanded polyglutamine protein levels and intracellular aggregates.

Similar content being viewed by others

References

  1. Cogoni, C., Romano, N. & Macino, G. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek 65, 205–209 (1994).

    Article  CAS  Google Scholar 

  2. Baulcombe, D.C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32, 79–88 (1996).

    Article  CAS  Google Scholar 

  3. Kennerdell, J.R. & Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  Google Scholar 

  4. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

  5. Waterhouse, P.M., Graham, M.W. & Wang, M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13959–13964 (1998).

    Article  CAS  Google Scholar 

  6. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).

    Article  CAS  Google Scholar 

  7. Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell Biol. 21, 7807–7816 (2001).

    Article  CAS  Google Scholar 

  8. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R.M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

    CAS  Google Scholar 

  9. Caplan, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    Article  Google Scholar 

  10. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  11. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  12. Lee, N.S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 19, 500–505 (2002).

    Article  Google Scholar 

  13. Miyagishi, M. & Taira, K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat. Biotechnol. 19, 497–500 (2002).

    Article  Google Scholar 

  14. Paul, C.P., Good, P.D., Winer, I. & Engelke, D.R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 19, 505–508 (2002).

    Article  Google Scholar 

  15. Manche, L., Green, S.R., Schmedt, C. & Mathews, M.B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell Biol. 12, 5238–5248 (1992).

    Article  CAS  Google Scholar 

  16. Minks, M.A., West, D.K., Benvin, S. & Baglioni, C. Structural requirements of double-stranded RNA for the activation of 2', 5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254, 10180–10183 (1979).

    CAS  PubMed  Google Scholar 

  17. Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  Google Scholar 

  18. Xia, H., Mao, Q. & Davidson, B.L. The HIV tat protein transduction domain improves the biodistribution of β-glucuronidase expressed from recombinant viral vectors. Nat. Biotechnol. 19, 640–644 (2001).

    Article  CAS  Google Scholar 

  19. Anderson, R.D., Haskell, R.E., Xia, H., Roessler, B.J. & Davidson, B.L. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther. 7, 1034–1038 (2000).

    Article  CAS  Google Scholar 

  20. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  21. Ooboshi, H. et al. Augmented adenovirus-mediated gene transfer to atherosclerotic vessels. Arterioscler. Thromb. Vasc. Biol. 17, 1786–1792 (1997).

    Article  CAS  Google Scholar 

  22. Stein, C.S., Ghodsi, A., Derksen, T. & Davidson, B.L. Systemic and central nervous system correction of lysosomal storage in mucopolysaccharidosis type VII mice. J. Virol. 73, 3424–3429 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Margolis, R.L. & Ross, C.A. Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol. Med. 7, 479–482 (2001).

    Article  CAS  Google Scholar 

  24. Davidson, B.L. et al. Recombinant adeno-associated type 2, 4 and 5 vectors: transduction of variant cell types and regions in the mammalian CNS. Proc. Natl. Acad. Sci. USA 97, 3428–3432 (2000).

    Article  CAS  Google Scholar 

  25. Brooks, A.I. et al. Functional correction of established CNS deficits in an animal model of lysosomal storage disease using feline immunodeficiency virus-based vectors. Proc. Natl. Acad. Sci. USA 99, 6216–6221 (2002).

    Article  CAS  Google Scholar 

  26. Chai, Y., Koppenhafer, S.L., Bonini, N.M. & Paulson, H.L. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10338–10347 (1999).

    Article  CAS  Google Scholar 

  27. Moulder, K.L., Onodera, O., Burk, J.R., Strittmatter, W.J. & Johnson, E.M. Jr. Generation of neuronal intranuclear inclusion by polyglutamine–GFP: analysis of inclusion clearance and toxicity as a function of polyglutamine length. J. Neurosci. 19, 705–715 (1999).

    Article  CAS  Google Scholar 

  28. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  Google Scholar 

  29. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  Google Scholar 

  30. Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    Article  CAS  Google Scholar 

  31. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    Article  CAS  Google Scholar 

  32. Blömer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH (HD 44093) and the Roy J. Carver Trust. The authors thank P.B. McCray, Jr. and M.J. Welsh for critical review of the work, and C. McLennan, J. Lindbloom, N. Kiewiet, and A. Espie-Ziemann for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly L Davidson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, H., Mao, Q., Paulson, H. et al. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20, 1006–1010 (2002). https://doi.org/10.1038/nbt739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing