Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis

Abstract

Phosphatidylinositol-3,4,5-trisphosphate (PtdInsP3) regulates diverse cellular functions, including cell proliferation and apoptosis, and has roles in the progression of diabetes and cancer. However, little is known about its production. Here, we describe fluorescent indicators for PtdInsP3 that allow a spatio-temporal examination of PtdInsP3 production in single living cells. After ligand stimulation, PtdInsP3 levels increased to a larger extent at the endomembranes (that is, the endoplasmic reticulum and the Golgi) than at the plasma membrane. This increase was found to originate from in situ production at the endomembranes, a process stimulated directly by receptor tyrosine kinases endocytosed from the plasma membrane to the endomembranes. The demonstration of PtdInsP3 production through receptor endocytosis addresses a long-standing question about how signalling pathways downstream of PtdInsP3 are activated at intracellular compartments remote from the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescent indicators for PtdInsP3 in single living cells.
Figure 2: Fluorescence imaging of fllip-pm.
Figure 3: Response of fllip-em to PtdInsP3 at the endomembranes after PDGF stimulation.
Figure 4: Inhibition of PtdInsP3 production at endomembranes.

Similar content being viewed by others

References

  1. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  Google Scholar 

  2. Czech, M.P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000).

    Article  CAS  Google Scholar 

  3. Marte, B.M. & Downward, J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355–358 (1997).

    Article  CAS  Google Scholar 

  4. Wymann, M.P. & Pirola, L. Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127–150 (1998).

    Article  CAS  Google Scholar 

  5. Varnai, P., Rother, K.I. & Balla, T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 274, 10983–10989 (1999).

    Article  CAS  Google Scholar 

  6. Venkateswarlu, K., Gunn-Moore, F., Tavare, J.M. & Cullen, P.J. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem. J. 335, 139–146 (1998).

    Article  CAS  Google Scholar 

  7. Venkateswarlu, K., Oatey, P.B., Tavare, J.M. & Cullen, P.J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol. 8, 463–466 (1998).

    Article  CAS  Google Scholar 

  8. Watton, S.J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Curr. Biol. 9, 433–436 (1999).

    Article  CAS  Google Scholar 

  9. Miyawaki, A. & Tsien, R.Y. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Method. Enzymol. 327, 472–500 (2000).

    Article  CAS  Google Scholar 

  10. Sato, M., Hida, N., Ozawa, T. & Umezawa, Y. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal. Chem. 72, 5918–5924 (2000).

    Article  CAS  Google Scholar 

  11. Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnol. 20, 287–294 (2002).

    Article  CAS  Google Scholar 

  12. Merutka, G., Shalongo, W. & Stellwagen, E. A model peptide with enhanced helicity. Biochemistry 30, 4245–4248 (1991).

    Article  CAS  Google Scholar 

  13. Resh, M.D. Regulation of cellular signaling by fatty acid acylation and prenylation of signal transduction proteins. Cell. Signal. 8, 403–412 (1996).

    Article  CAS  Google Scholar 

  14. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    Article  CAS  Google Scholar 

  15. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  16. Gray, A., Kaay, J.v.d. & Downes, C.P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositide-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-triphosphate in vivo. Biochem. J. 344, 929–936 (1999).

    Article  CAS  Google Scholar 

  17. Venkateswarlu, K., Gunn-Moore, F., Tavare, J.M. & Cullen, P.J. EGF- and NGF-stimulated translocation of cytohensine-1 to the plasma membrane of PC12 cells requires PI 3-kinase activation and a functional cytohensin-1 PH domain. J. Cell Sci. 112, 1957–1965 (1999).

    CAS  PubMed  Google Scholar 

  18. Vieira, A.V., Lamaze, C. & Schmid, S.L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  Google Scholar 

  19. Qualmann, B., Kessels, M.M. & Kelly, R.B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).

    Article  CAS  Google Scholar 

  20. Frangioni, J.V., Beahm, P.H., Shifrin, V., Jost, C.A. & Neel, B.G. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68, 545–560 (1992).

    Article  CAS  Google Scholar 

  21. Haj, F.G., Verveer, P.J., Squire, A., Neel, B.G. & Bastiaens, P.I.H. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295, 1708–1711 (2002).

    Article  CAS  Google Scholar 

  22. Ceresa, B.C. & Schmid, S.L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210 (2000).

    Article  CAS  Google Scholar 

  23. Lavoie, C. et al. β1/β2-adrenergic receptor heterodimerization regulates β2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem. 277, 35402–35410 (2002).

    Article  CAS  Google Scholar 

  24. Watt, S.A., Kular, G., Fleming I.N., Downes, C.P. & Lucocq, J.M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1 . Biochem. J. 363, 657–666 (2002).

    Article  CAS  Google Scholar 

  25. Fulton, D. et al. Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J. Biol. Chem. 277, 4277–4284 (2002).

    Article  CAS  Google Scholar 

  26. Sasaki, K., Sato, M. & Umezawa, Y. Fluorescent indicators for Akt/Protein Kinase B and dynamics of Akt activity visualized in living cells. J. Biol. Chem. 278, 30945–30951 (2003).

    Article  CAS  Google Scholar 

  27. Wang, H.-G. et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339–343 (1999).

    Article  CAS  Google Scholar 

  28. Zhang, G., Kazanietz, M.G., Blumberg, P.M. & Hurley, J.H. Crystal structure of the Cys2 activator-binding domain of prortein kinase C δ in complex with phorbol ester. Cell 81, 917–924 (1995).

    Article  CAS  Google Scholar 

  29. Misra, S., Miller, G.J. & Hurley, J.H. Recognition of phosphatidylinositol 3-phosphate. Cell 107, 559–562 (2001).

    Article  CAS  Google Scholar 

  30. Deak, M., Casamayor, A., Currie, R.A., Downes, C.P. & Alessi D.R. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 451, 220–226 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CREST (Core Research for Evolutional Science and Technology) of JST (Japan Science and Technology Agency) and grants for M.S. and Y.U. from the Ministry of Education, Science and Culture, Japan. We thank J. E. Pessin for providing an adenovirus vector of DynK44A, M. Bryer-Ash for providing an adenovirus vector of PTP1B and Y. Imai for experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Umezawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Ueda, Y., Takagi, T. et al. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5, 1016–1022 (2003). https://doi.org/10.1038/ncb1054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing