Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network

Abstract

Protein kinase D (PKD) binds to diacylglycerol (DAG) in the trans-Golgi network (TGN) and is activated by trimeric G-protein subunits βγ. This complex then regulates the formation of transport carriers in the TGN that traffic to the plasma membrane in non-polarized cells. Here we report specificity of different PKD isoforms in regulating protein trafficking from the TGN. Kinase-inactive forms of PKD1, PKD2 and PKD3 localize to the TGN in polarized and non-polarized cells. PKD activity is required only for the transport of proteins containing basolateral sorting information, and seems to be cargo specific.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKD2-KD localized to the TGN causes extensive tubulation and blocks transport to the cell surface.
Figure 2: KD isoforms of PKD localize to the TGN of MDCK cells.
Figure 3: Expression of mutant PKD1 or PKD2 does not affect transport to the apical domain in polarized MDCK cells.
Figure 4: Expression of mutant PKD1 or PKD2 blocks transport to the basolateral surface.
Figure 5: Non-polarized HeLa cells sort proteins into apical-like (PKD-independent) and basolateral-like (PKD-dependent) pathways.

Similar content being viewed by others

References

  1. Maeda, Y., Beznoussenko, G.V., Van Lint, J., Mironov, A.A. & Malhotra, V. Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. EMBO J. 20, 5982–5990 (2001).

    Article  CAS  Google Scholar 

  2. Baron, C.L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  Google Scholar 

  3. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  Google Scholar 

  4. Sturany, S. et al. Molecular cloning and characterization of the human protein kinase D2. A novel member of the protein kinase D family of serine threonine kinases. J. Biol. Chem. 276, 3310–3318 (2001).

    Article  CAS  Google Scholar 

  5. Hayashi, A., Seki, N., Hattori, A., Kozuma, S. & Saito, T. PKCnu, a new member of the protein kinase C family, composes a fourth subfamily with PKCmu. Biochim. Biophys. Acta 1450, 99–106 (1999).

    Article  CAS  Google Scholar 

  6. Mostov, K.E. & Bergmann, J.E. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell. Biol. 32, 85–110 (1989).

    Article  Google Scholar 

  7. Mostov, K.E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    Article  CAS  Google Scholar 

  8. Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997).

    Article  CAS  Google Scholar 

  9. Folsch, H., Pypaert, M., Schu, P. & Mellman, I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J. Cell Biol. 152, 595–606 (2001).

    Article  CAS  Google Scholar 

  10. Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nature Cell Biol. 4, 154–159 (2002).

    Article  CAS  Google Scholar 

  11. Hunziker, W., Harter, C., Matter, K. & Mellman, I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 66, 907–920 (1991).

    Article  CAS  Google Scholar 

  12. Aroeti, B., Kosen, P.A., Kuntz, I.D., Cohen, F.E. & Mostov, K.E. Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor. J. Cell Biol. 123, 1149–1160 (1993).

    Article  CAS  Google Scholar 

  13. Gan, Y., McGraw, T.E. & Rodriguez-Boulan, E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nature Cell Biol. 4, 605–609 (2002).

    Article  CAS  Google Scholar 

  14. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    Article  CAS  Google Scholar 

  15. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  16. Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750 (2001).

    Article  CAS  Google Scholar 

  17. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  Google Scholar 

  18. Simon, J.P. et al. The in vitro generation of post-Golgi vesicles carrying viral envelope glycoproteins requires an ARF-like GTP-binding protein and a protein kinase C associated with the Golgi apparatus. J. Biol. Chem. 271, 16952–16961 (1996).

    Article  CAS  Google Scholar 

  19. Simon, J.P. et al. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J. Cell Biol. 135, 355–370 (1996).

    Article  CAS  Google Scholar 

  20. Toomre, D., Keller, P., White, J., Olivo, J.C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999).

    CAS  PubMed  Google Scholar 

  21. Matter, K. & Mellman, I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr. Opin. Cell Biol. 6, 545–554 (1994).

    Article  CAS  Google Scholar 

  22. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal–lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  23. Yeaman, C., Grindstaff, K.K., Wright, J.R. & Nelson, W.J. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol. 155, 593–604 (2001).

    Article  CAS  Google Scholar 

  24. Musch, A., Xu, H., Shields, D. & Rodriguez-Boulan, E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol. 133, 543–558 (1996).

    Article  CAS  Google Scholar 

  25. Yoshimori, T., Keller, P., Roth, M.G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 133, 247–256 (1996).

    Article  CAS  Google Scholar 

  26. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  27. Urban, J., Parczyk, K., Leutz, A., Kayne, M. & Kondor-Koch, C. Constitutive apical secretion of an 80-kD sulfated glycoprotein complex in the polarized epithelial Madin–Darby canine kidney cell line. J. Cell Biol. 105, 2735–2743 (1987).

    Article  CAS  Google Scholar 

  28. Chamberlain, J.P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal. Biochem. 98, 132–135 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Malhotra laboratory is funded by grants (GM 53747 and GM 46224) from the NIH and the Human Frontier Science Program, in the Nelson laboratory from the NIH (GM35227), and by a Howard Hughes Medical Institute Biomedical Research Support Program Faculty Startup Package to C.Y. I.A. is supported by a fellowship from the Spanish Ministry of Education, Culture and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Malhotra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeaman, C., Ayala, M., Wright, J. et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol 6, 106–112 (2004). https://doi.org/10.1038/ncb1090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing