Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIF activation by pH-dependent nucleolar sequestration of VHL

Abstract

Hypoxia and acidosis occur in a wide variety of physiological and pathological settings that include muscle stress, tumour development and ischaemic disorders. A central element in the adaptive response to cellular hypoxia is HIF (hypoxia-inducible factor), a transcription factor that activates an array of genes implicated in oxygen homeostasis, tumour vascularization and ischaemic preconditioning1. HIF is activated by hypoxia, but undergoes degradation by the VHL (von Hippel-Lindau) tumour suppressor protein in the presence of oxygen2,3. Here, we demonstrate that hypoxia induction or normoxic acidosis can neutralize the function of VHL by triggering its nucleolar sequestration, a regulatory mechanism of protein function that is observed rarely4,5,6,7. VHL is confined to nucleoli until neutral pH conditions are re-instated. Nucleolar sequestration of VHL enables HIF to evade destruction in the presence of oxygen and activate its target genes. Our findings suggest that an increase in hydrogen ions elicits a transient and reversible loss of VHL function by promoting its nucleolar sequestration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VHL localizes to sub-nuclear foci under physiological acidosis.
Figure 3: Acidosis prolongs HIF stabilization after re-oxygenation.
Figure 2: VHL redistributes to the nucleolus during acidosis.
Figure 4: Nucleolar sequestration of VHL prevents the degradation of HIF.
Figure 5: Normoxic acidosis triggers nucleolar sequestration of VHL to activate HIF.

Similar content being viewed by others

References

  1. Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  2. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  3. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Visintin, R., Hwang, E.S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Tsai, R.Y. & McKay, R.D. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 16, 2991–3003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagner, P.D. Skeletal muscle angiogenesis. A possible role for hypoxia. Adv. Exp. Med. Biol. 502, 21–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kaelin, W.G., Jr. Molecular basis of the VHL hereditary cancer syndrome. Nature Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  10. Harris, A.L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    Article  CAS  Google Scholar 

  11. Currin, R.T., Gores, G.J., Thurman, R.G. & Lemasters, J.J. Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. Faseb J. 5, 207–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Kaku, D.A., Giffard, R.G. & Choi, D.W. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260, 1516–1518 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Giffard, R.G., Monyer, H., Christine, C.W. & Choi, D.W. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506, 339–342 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Morimoto, Y., Kemmotsu, O. & Alojado, E.S. Extracellular acidosis delays cell death against glucose-oxygen deprivation in neuroblastoma x glioma hybrid cells. Crit. Care Med. 25, 841–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen, O.B., de Paoli, F. & Overgaard, K. Protective effects of lactic acid on force production in rat skeletal muscle. J. Physiol. 536, 161–166 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S. et al. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol. Cell Biol. 19, 1486–1497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Groulx, I. & Lee, S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol. Cell Biol. 22, 5319–5336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kibel, A., Iliopoulos, O., DeCaprio, J.A. & Kaelin, W.G., Jr. Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Corless, C.L., Kibel, A.S., Iliopoulos, O. & Kaelin, W.G., Jr. Immunostaining of the von Hippel-Lindau gene product in normal and neoplastic human tissues. Hum. Pathol. 28, 459–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Warburg, O. The metabolism of tumors (R.R. Smith, New York, NY, USA, 1931).

    Google Scholar 

  21. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  22. Sutherland, R.M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W.G., Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nature Med. 1, 822–826 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  Google Scholar 

  25. Cockman, M.E. et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bonicalzi, M.E., Groulx, I., de Paulsen, N. & Lee, S. Role of exon 2-encoded beta -domain of the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 276, 1407–1416 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gunaratnam, L. et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. J. Biol. Chem. 278, 44966–44974 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Chavez, J.C. & LaManna, J.C. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22, 8922–8931 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachant, J.B. & Elledge, S.J. Mitotic treasures in the nucleolus. Nature 398, 757–758 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Lavigne for technical expertise. This work was supported by a grant from the Canadian Institutes of Health Research (CIHR). K.M. is supported by the Natural Science and Engineering Research Council of Canada (NSERC). S.L. is a Harold E. Johns investigator of the National Cancer Institute of Canada (NCIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekhail, K., Gunaratnam, L., Bonicalzi, ME. et al. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6, 642–647 (2004). https://doi.org/10.1038/ncb1144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing