Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins

Abstract

Heterotrimeric G proteins act during signal transduction in response to extracellular ligands. They are also required for spindle orientation and cell polarity during asymmetric cell division. We show here that, in Drosophila, both functions require the Gα interaction partner Ric-8. Drosophila Ric-8 is a cytoplasmic protein that binds both the GDP- and GTP-bound form of the G-protein α-subunit Gαi. In ric-8 mutants, neither Gαi nor its associated β-subunit Gβ13F are localized at the plasma membrane, which leads to their degradation in the cytosol. During asymmetric cell division, this leads to various defects: apico–basal polarity is not maintained, mitotic spindles are misoriented and the size of the two daughter cells becomes nearly equal. ric-8 mutants also have defects in gastrulation that resemble mutants in the Gα protein concertina or the extracellular ligand folded gastrulation. Our results indicate a model in which both receptor-dependent and receptor-independent G-protein functions are executed at the plasma membrane and require the Ric-8 protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ric-8 is a cytosolic Gαi-binding protein.
Figure 2: ric-8 is required for gastrulation and asymmetric cell division.
Figure 3: Neuroblasts divide symmetrically in ric-8 mutants.
Figure 4: ric-8 is required for plasma-membrane localization of Gαi, Gαo and Gβ13F.
Figure 5: Biochemical analysis of Ric-8 function.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Parks, S. & Wieschaus, E. The Drosophila gastrulation gene concertina encodes a G α-like protein. Cell 64, 447–458 (1991).

    Article  CAS  Google Scholar 

  2. Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    Article  CAS  Google Scholar 

  3. Izumi, Y., Ohta, N., Itoh-Furuya, A., Fuse, N. & Matsuzaki, F. Differential functions of G protein and Baz-aPKC signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164, 729–738 (2004).

    Article  CAS  Google Scholar 

  4. Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76, 1075–1089 (1994).

    Article  CAS  Google Scholar 

  5. Rhyu, M.S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  Google Scholar 

  6. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 (1997).

    Article  CAS  Google Scholar 

  7. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).

    Article  CAS  Google Scholar 

  8. Fuse, N., Hisata, K., Katzen, A. L. & Matsuzaki, F. Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13, 947–954 (2003).

    Article  CAS  Google Scholar 

  9. Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

    Article  CAS  Google Scholar 

  10. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    Article  CAS  Google Scholar 

  11. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. 20, RC84 (2000).

    Article  CAS  Google Scholar 

  12. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  Google Scholar 

  13. Cismowski, M. J. et al. Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nature Biotechnol. 17, 878–883 (1999).

    Article  CAS  Google Scholar 

  14. Hampoelz, B. & Knoblich, J. A. Heterotrimeric G proteins: new tricks for an old dog. Cell 119, 453–456 (2004).

    Article  CAS  Google Scholar 

  15. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  16. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  Google Scholar 

  17. Lyczak, R., Gomes, J. E. & Bowerman, B. Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev. Cell 3, 157–166 (2002).

    Article  CAS  Google Scholar 

  18. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol. 3, 297–300 (2001).

    Article  CAS  Google Scholar 

  19. Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003).

    Article  CAS  Google Scholar 

  20. Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300, 1957–1961 (2003).

    Article  CAS  Google Scholar 

  21. Srinivasan, D. G., Fisk, R. M., Xu, H. & Van Den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    Article  CAS  Google Scholar 

  22. Miller, K. G. & Rand, J. B. A role for RIC-8 (Synembryn) and GOA-1 (G(o)α) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156, 1649–1660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Afshar, K. et al. RIC-8 is required for GPR-1/2-dependent Gα function during asymmetric division of C. elegans embryos. Cell 119, 219–230 (2004).

    Article  CAS  Google Scholar 

  24. Couwenbergs, C., Spilker, A. C. & Gotta, M. Control of embryonic spindle positioning and Gα activity by C. elegans RIC-8. Curr. Biol. 14, 1871–1876 (2004).

    Article  CAS  Google Scholar 

  25. Miller, K. G., Emerson, M. D., McManus, J. R. & Rand, J. B. RIC-8 (Synembryn): a novel conserved protein that is required for G(q)α signaling in the C. elegans nervous system. Neuron 27, 289–299 (2000).

    Article  CAS  Google Scholar 

  26. Tall, G. G., Krumins, A. M. & Gilman, A. G. Mammalian Ric-8A (Synembryn) is a heterotrimeric Gα protein guanine nucleotide exchange factor. J. Biol. Chem. 278, 8356–8362 (2003).

    Article  CAS  Google Scholar 

  27. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    Article  CAS  Google Scholar 

  28. Chen, C. A. & Manning, D. R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    Article  CAS  Google Scholar 

  29. Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001).

    Article  CAS  Google Scholar 

  30. Ntwasa, M., Aapies, S., Schiffmann, D. A. & Gay, N. J. Drosophila embryos lacking N-myristoyltransferase have multiple developmental defects. Exp. Cell Res. 262, 134–144 (2001).

    Article  CAS  Google Scholar 

  31. Takida, S. & Wedegaertner, P. B. Heterotrimer formation, together with isoprenylation, is required for plasma membrane targeting of Gβγ. J. Biol. Chem. 278, 17284–17290 (2003).

    Article  CAS  Google Scholar 

  32. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Betschinger for comments on the manuscript; K. Afshar and P.Gonczy for sharing unpublished results; D. Dorner, M. Petronczki and M. Schaefer for generating UAS-Gβ13F, UAS-Gγ1, Myc–Gαi and Myc–GαiQL; S. Bhalerao and A. Hutterer for help with mutant analysis; and Y. N. Jan, T. Volk, the Bloomington Drosophila Stock Center and the Developmental Studies Hybridoma Bank (DSHB) for reagents. S.K.B. is supported by Boehringer Ingelheim Fonds. Work in J.A.K.'s lab is supported by the Austrian Academy of Sciences and the Austrian Research Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen A. Knoblich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 and S2 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampoelz, B., Hoeller, O., Bowman, S. et al. Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nat Cell Biol 7, 1099–1105 (2005). https://doi.org/10.1038/ncb1318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing