Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis

Abstract

Fusion of vesicles into target membranes during many types of regulated exocytosis requires both SNARE-complex proteins and fusogenic lipids, such as phosphatidic acid. Mitochondrial fusion is less well understood but distinct, as it is mediated instead by the protein Mitofusin (Mfn). Here, we identify an ancestral member of the phospholipase D (PLD) superfamily of lipid-modifying enzymes that is required for mitochondrial fusion. Mitochondrial PLD (MitoPLD) targets to the external face of mitochondria and promotes trans-mitochondrial membrane adherence in a Mfn-dependent manner by hydrolysing cardiolipin to generate phosphatidic acid. These findings reveal that although mitochondrial fusion and regulated exocytic fusion are mediated by distinct sets of protein machinery, the underlying processes are unexpectedly linked by the generation of a common fusogenic lipid. Moreover, our findings suggest a novel basis for the mitochondrial fragmentation observed during apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dimerized MitoPLD localizes to the mitochondrial exterior.
Figure 2: MitoPLD aggregates mitochondria.
Figure 3: MitoPLD is required for fusion.
Figure 4: MitoPLD functions downstream of Mfn.
Figure 5: MitoPLD hydrolyses cardiolipin to generate phosphatidic acid.

Similar content being viewed by others

References

  1. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  3. Vitale, N. et al. Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J. 20, 2424–2434 (2001).

    Article  CAS  Google Scholar 

  4. Huang, P., Altshuller, Y. M., Chunqiu Hou, J., Pessin, J. E. & Frohman, M. A. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol. Biol. Cell 16, 2614–2623 (2005).

    Article  CAS  Google Scholar 

  5. Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004).

    Article  CAS  Google Scholar 

  6. Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).

    Article  CAS  Google Scholar 

  7. Malka, F. et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 6, 853–859 (2005).

    Article  CAS  Google Scholar 

  8. Meeusen, S., McCaffery, J. M. & Nunnari, J. Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747–1752 (2004).

    Article  CAS  Google Scholar 

  9. Koshiba, T. et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858–862 (2004).

    Article  CAS  Google Scholar 

  10. Ishihara, N., Eura, Y. & Mihara, K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535–6546 (2004).

    Article  CAS  Google Scholar 

  11. Nakanishi, H. et al. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J. Cell. Sci. 119, 1406–1415 (2006).

    Article  CAS  Google Scholar 

  12. Hammond, S. M. et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640–29643 (1995).

    Article  CAS  Google Scholar 

  13. Sung, T. C. et al. Mutagenesis of phospholipase D defines a superfamily including a trans- Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519–4530 (1997).

    Article  CAS  Google Scholar 

  14. Stuckey, J. A. & Dixon, J. E. Crystal structure of a phospholipase D family member. Nature Struct. Biol. 6, 278–284 (1999).

    Article  CAS  Google Scholar 

  15. Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. & Mihara, K. Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell Biol. 151, 277–288 (2000).

    Article  CAS  Google Scholar 

  16. Leiros, I., Secundo, F., Zambonelli, C., Servi, S. & Hough, E. The first crystal structure of a phospholipase D. Structure Fold Des. 8, 655–667 (2000).

    Article  CAS  Google Scholar 

  17. Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354 (2002).

    Article  CAS  Google Scholar 

  18. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  Google Scholar 

  19. Chen, H., Chomyn, A. & Chan, D. C. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185–26192 (2005).

    Article  CAS  Google Scholar 

  20. Cable, M. B., Jacobus, J. & Powell, G. L. Cardiolipin: a stereospecifically spin-labeled analogue and its specific enzymic hydrolysis. Proc. Natl Acad. Sci. USA 75, 1227–1231 (1978).

    Article  CAS  Google Scholar 

  21. Liu, J. et al. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol. Cancer Res. 1, 892–902 (2003).

    CAS  PubMed  Google Scholar 

  22. Hovius, R., Thijssen, J., van der Linden, P., Nicolay, K. & de Kruijff, B. Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett. 330, 71–76 (1993).

    Article  CAS  Google Scholar 

  23. Cao, J., Liu, Y., Lockwood, J., Burn, P. & Shi, Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem. 279, 31727–31734 (2004).

    Article  CAS  Google Scholar 

  24. Karbowski, M. et al. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493–499 (2004).

    Article  CAS  Google Scholar 

  25. Esposti, M. D., Cristea, I. M., Gaskell, S. J., Nakao, Y. & Dive, C. Proapoptotic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death. Differ. 10, 1300–1309 (2003).

    Article  CAS  Google Scholar 

  26. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chem. Biol. 1, 223–232 (2005).

    Article  CAS  Google Scholar 

  27. Neutzner, A. & Youle, R. J. Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 18598–18603 (2005).

    Article  CAS  Google Scholar 

  28. Nakanishi, H., de los Santos, P. & Neiman, A. M. Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol. Biol. Cell 15, 1802–1815 (2004).

    Article  CAS  Google Scholar 

  29. Vicogne, J. et al. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl Acad. Sci. USA doi: 10.1073/pnas0606881103 (2006).

  30. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).

    Article  Google Scholar 

  31. Kuhlenbaumer, G., Young, P., Hunermund, G., Ringelfstein, B. & Stogbauer, F. Clinical features and molecular genetics of hereditary peripheral neuropathies. J. Neurol. 249, 1629–1650 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Moll, C. Kisker, J. C. Hsieh, G. Rodomen, S. Van Horn, M. Fuller, M. Rojo, R. J. Youle, D. Bogenhagen, J. Vicogne, A. Neiman, G. Du, S. Tsirka and members of the Frohman lab for technical advice and assistance, reagents and critical discussions. The work was supported by awards National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; 64166) and National Institute of General Medical Sciences (NIGMS; 71520) to M.A.F., a National Research Service Award (NRSA) T32 fellowship to G.M.J., and a fellowship award to S.Y.C. from the United Mitochondrial Disease Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.C. and M.A.F. conceived the project. S.Y.C. performed most of the experiments with additional contributions from P.H., G.M.J. and J.S. D.C. provided Mfn-deficient cell lines and technical advice. The manuscript was mostly written by S.Y.C. and M.A.F.

Corresponding author

Correspondence to Michael A. Frohman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and Supplementary Methods (PDF 1736 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, SY., Huang, P., Jenkins, G. et al. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8, 1255–1262 (2006). https://doi.org/10.1038/ncb1487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing