Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sorting nexins provide diversity for retromer-dependent trafficking events

Abstract

Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sorting itineraries in the mammalian endosomal network and the distinct SNX-BAR-retromer and SNX3-retromer complexes.
Figure 3: Spatial segregation model to account for differential cargo sorting through SNX3-retromer and SNX-BAR-retromer pathways.
Figure 2: A proposed pathway for SNX-BAR-retromer-mediated sorting.

Similar content being viewed by others

References

  1. Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8, 603–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 9, 574–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pucadyil, T. J. & Schmid, S. L. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325, 1217–1220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins—unifying trends and new perspectives. Traffic 6, 75–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Attar, N. & Cullen, P. J. The retromer complex. Adv. Enzyme Regul. 50, 216–236 (2009).

    Article  PubMed  Google Scholar 

  9. Strochlic, T. I., Setty, T. G., Sitaram, A. & Burd, C. G. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J. Cell Biol. 177, 115–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 717–723 (2011).

    Article  CAS  Google Scholar 

  11. Gokool, S., Tattersall, D. & Seaman, M. N. EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8, 1873–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Gomez, T. S. & Billadeau, D. D. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17, 699–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harbour, M. E. et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123, 3703–3717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seaman, M. N., Harbour, M. E., Tattersall, D., Read, E. & Bright, N. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371–2382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell 17, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harterink, M. et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13, 914–923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koumandou, V. L. et al. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J. Cell. Sci. 124, 1496–1509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cozier, G. E. et al. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 48730–48736 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. van Weering, J. R., Verkade, P. & Cullen, P. J. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin. Cell Dev. Biol. 21, 371–380 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Carlton, J. G. et al. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J. Cell Sci. 118, 4527–4539 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Frost, A., Unger, V. M. & De Camilli, P. The BAR domain superfamily: membrane-molding macromolecules. Cell 137, 191–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhatia, V. K. et al. Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J. 28, 3303–3314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141–4146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pylypenko, O., Lundmark, R., Rasmuson, E., Carlsson, S. R. & Rak, A. The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 26, 4788–4800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. van Weering, J. R. et al. Intracellular membrane traffic at high resolution. Methods Cell Biol. 96, 619–648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurten, R. C. et al. Self-assembly and binding of a sorting nexin to sorting endosomes. J. Cell Sci. 114, 1743–1756 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Mari, M. et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9, 380–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Norwood, S. J. et al. Assembly and solution structure of the core retromer protein complex. Traffic 12, 56–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nothwehr, S. F., Ha, S. A. & Bruinsma, P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J. Cell Biol. 151, 297–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seaman, M. N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tabuchi, M., Yanatori, I., Kawai, Y. & Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci. 123, 756–766 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, D. et al. Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Feinstein, T. N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr. Biol. 21, 1111–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Shi, H., Rojas, R., Bonifacino, J. S. & Hurley, J. H. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat. Struct. Mol. Biol. 13, 540–548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Balderhaar, H. J. et al. The Rab GTPase Ypt7 is linked to retromer-mediated receptor recycling and fusion at the yeast late endosome. J. Cell Sci. 123, 4085–4094 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Rojas, R. et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mukhopadhyay, A., Pan, X., Lambright, D. G. & Tissenbaum, H. A. An endocytic pathway as a target of tubby for regulation of fat storage. EMBO Rep. 8, 931–938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McGough, I. J. & Cullen, P. J. Recent advances in retromer biology. Traffic 12, 963–971 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Shi, Y., Stefan, C. J., Rue, S. M., Teis, D. & Emr, S. D. Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol. Biol. Cell 22, 4093–4107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lauffer, B. E. et al. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol. 190, 565–574 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Joubert, L. et al. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J. Cell Sci. 117, 5367–5379 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Balana, B. et al. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc. Natl Acad. Sci. USA 108, 5831–5836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lunn, M. L. et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat. Neurosci. 10, 1249–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Cai, L., Loo, L. S., Atlashkin, V., Hanson, B. J. & Hong, W. Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Mol. Cell Biol. 31, 1734–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, J. et al. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J. Biol. Chem. 283, 11501–11508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stockinger, W. et al. The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J. 21, 4259–4267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J. 24, 2851–2861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Daumke, O. et al. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449, 923–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Naslavsky, N. & Caplan, S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 21, 122–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soldati, T. & Schliwa, M. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7, 897–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hong, Z. et al. The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Res. 19, 1334–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Derivery, E. et al. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell 17, 712–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Jia, D. et al. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc. Natl Acad. Sci. USA 107, 10442–10447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lenz, M., Morlot, S. & Roux, A. Mechanical requirements for membrane fission: common facts from various examples. FEBS Lett. 583, 3839–3846 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. McMahon, H. T. & Mills, I. G. COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr. Opin. Cell Biol. 16, 379–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Collins, B. M. et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Swarbrick, J. D. et al. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS One 6, e20420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e57 (2009).

    Article  PubMed  CAS  Google Scholar 

  70. Traub, L. M. Regarding the amazing choreography of clathrin coats. PLoS Biol. 9, e1001037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dove, S. K., Dong, K., Kobayashi, T., Williams, F. K. & Michell, R. H. Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Rutherford, A. C. et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J. Cell Sci. 119, 3944–3957 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Belenkaya, T. Y. et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14, 120–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Franch-Marro, X. et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10, 170–177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pan, C. L. et al. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev. Cell 14, 132–139 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Port, F. et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, P. T. et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14, 140–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hausmann, G., Banziger, C. & Basler, K. Helping Wingless take flight: how WNT proteins are secreted. Nat. Rev. Mol. Cell Biol. 8, 331–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Lorenowicz, M. J. & Korswagen, H. C. Sailing with the Wnt: Charting the Wnt processing and secretion route. Exp. Cell Res. 315, 2683–2689 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Port, F. & Basler, K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 11, 1265–1271 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Coudreuse, D. Y., Roel, G., Betist, M. C., Destree, O. & Korswagen, H. C. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312, 921–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat. Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. van Weering, J. R., Verkade, P. & Cullen, P. J. SNX-BAR-mediated endosome tubulation is coordinated with endosome maturation. Traffic http://dx.doi.org/10.1111/j.1600-0854.2011.01297.x (2011).

  86. Shi, A. et al. Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J. 28, 3290–3302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Skanland, S. S., Walchli, S., Brech, A. & Sandvig, K. SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 4, e5935 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Silhankova, M., Port, F., Harterink, M., Basler, K. & Korswagen, H. C. Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J. 29, 4094–4105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xue, Y. et al. Genetic analysis of the myotubularin family of phosphatases in Caenorhabditis elegans. J. Biol. Chem. 278, 34380–34386 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Cao, C., Backer, J. M., Laporte, J., Bedrick, E. J. & Wandinger-Ness, A. Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol. Biol. Cell 19, 3334–3346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao, C., Laporte, J., Backer, J. M., Wandinger-Ness, A. & Stein, M. P. Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes. Traffic 8, 1052–1067 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Heydorn, A. et al. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binidng phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin-1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J. Biol. Chem. 279, 54291–54303 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Dyve, A. B., Bergan, J., Utskarpen, A. & Sandvig, K. Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem. Biophys. Res. Comm. 390, 109–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Traer, C. J. et al. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat. Cell Biol. 9, 1370–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 120, 45–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oliviusson, P. et al. Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18, 1239–1252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Verges, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Jaillais, Y. et al. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130, 1057–1070 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Bujny, M. V., Popoff, V., Johannes, L. & Cullen, P. J. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans-Golgi network. J. Cell Sci. 120, 2010–2021 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Popoff, V. et al. The retromer complex and clathrin define an early endosomal retrograde exit site. J. Cell Sci. 120, 2022–2031 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Bujny, M. V. et al. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J. Cell Sci. 121, 2027–2036 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Nielsen, M. S. et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol. Cell Biol. 27, 6842–6851 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rogaeva, E. et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39, 168–177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kleine-Vehn, J. et al. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl Acad. Sci. USA 105, 17812–17817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamazaki, M. et al. Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant Cell Physiol. 49, 142–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Korolchuk, V. I. et al. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J. Cell Sci. 120, 4367–4376 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Lu, N., Shen, Q., Mahoney, T. R., Liu, X. & Zhou, Z. Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Mol. Biol. Cell 22, 354–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muhammad, A. et al. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc. Natl Acad. Sci. USA 105, 7327–7332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vieira, S. I. et al. Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol. Neurodegener. 5, 40 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Sullivan, C. P. et al. Retromer disruption promotes amyloidogenic APP processing. Neurobiol. Dis. 43, 338–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vilarino-Guell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Kingston, D. et al. Inhibition of retromer activity by Herpesvirus saimiri Tip leads to CD4 downregulation and efficient T cell transformation. J. Virol. 85, 10627–10638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kooner, S. J. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, B., Wu, Y. & Lin, X. Retromer regulates apical–basal polarity through recycling crumbs. Dev. Biol. 360, 87–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Bonifacino, J. S. & Hurley, J. H. Retromer. Curr. Opin. Cell Biol. 20, 427–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to J. van Weering for figures. We thank G. Banting, D. Billadeau, M. Harterink, W. Hong, J. Hurley, M. Lorenowicz, I. McGough, S. Munro, M. Seaman, F. Steinberg, D. Stephens, J. van Weering and L. Weismann for thought-provoking discussions. Work in the authors' laboratories are supported by the Wellcome Trust (089928/Z/09/Z and 085743 to P.J.C.) and the Dutch Cancer Society (HUBR 2008-4114) and a NWO VIDI fellowship (016.076.317 to H.C.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter J. Cullen or Hendrik C. Korswagen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, P., Korswagen, H. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 14, 29–37 (2012). https://doi.org/10.1038/ncb2374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2374

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing