Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ras signalling on the endoplasmic reticulum and the Golgi

Abstract

Current models evoke the plasma membrane (PM) as the exclusive platform from which Ras regulates signalling. We developed a fluorescent probe that reports where and when Ras is activated in living cells. We show that oncogenic H-Ras and N-Ras engage Raf-1 on the Golgi and that endogenous Ras and unpalmitoylated H-Ras are activated in response to mitogens on the Golgi and endoplasmic reticulum (ER), respectively. We also demonstrate that H-Ras that is restricted to the ER can activate the Erk pathway and transform fibroblasts, and that Ras localized on different membrane compartments differentially engages various signalling pathways. Thus, Ras signalling is not limited to the PM, but also proceeds on the endomembrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP–Raf-1–RBD reports the activation of Ras on the internal membranes of living cells.
Figure 2: Mitogen-stimulated activation of H-Ras on the PM and Golgi.
Figure 3: Bystander FRET demonstrates mitogen-stimulated activation of endogenous Ras on the PM and Golgi.
Figure 4: Activation of palmitoylation-deficient H-Ras on ER and Golgi membranes in response to growth factors.
Figure 5: Endocytosis is not required for growth factor stimulation of endomembrane-associated Ras.
Figure 6: Src is required for Ras activation on the Golgi and deactivation at the PM.
Figure 7: Activation of palmitoylation-deficient H-Ras stimulates the MAPK pathway.
Figure 8: Activated H-Ras restricted to the ER differentially stimulates signalling pathways and transforms fibroblasts.

Similar content being viewed by others

References

  1. Di Fiore, P. P. & Gill, G. N. Endocytosis and mitogenic signalling. Curr. Opin. Cell Biol. 11, 483–488 (1999).

    Article  CAS  Google Scholar 

  2. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signalling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  Google Scholar 

  3. Willingham, M. C., Pastan, I., Shih, T. Y. & Scolnick, E. M. Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19, 1005–1014 (1980).

    Article  CAS  Google Scholar 

  4. Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L. & Lowy, D. R. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 3, 2581–2585 (1984).

    Article  CAS  Google Scholar 

  5. Lowenstein, E. J. et al. The SH2 and SH3 Domain-containing Protein GRB2 Links Receptor Tyrosine Kinases to ras Signalling. Cell 70, 431–442 (1992).

    Article  CAS  Google Scholar 

  6. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    Article  CAS  Google Scholar 

  7. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. Activation of raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    Article  CAS  Google Scholar 

  8. Clarke, S. Protein isoprenylation and methylation at carboxyl terminal cysteine residues. Annu. Rev. Biochem. 61, 355–386 (1992).

    Article  CAS  Google Scholar 

  9. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 (1990).

    Article  CAS  Google Scholar 

  10. Choy, E. et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    Article  CAS  Google Scholar 

  11. Schmidt, W. K., Tam, A., Fujimura-Kamada, K. & Michaelis, S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal α-factor cleavage. Proc. Natl Acad. Sci. USA 95, 11175–11180 (1998).

    Article  CAS  Google Scholar 

  12. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    Article  CAS  Google Scholar 

  13. Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell Biol. 20, 2475–2487 (2000).

    Article  CAS  Google Scholar 

  14. Herrmann, C., Horn, G., Spaargaren, M. & Wittinghofer, A. Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794–6800 (1996).

    Article  CAS  Google Scholar 

  15. Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D. & Jovin, T. M. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–4253 (1996).

    Article  CAS  Google Scholar 

  16. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  Google Scholar 

  17. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  Google Scholar 

  18. Punnonen, E. L., Ryhanen, K. & Marjomaki, V. S. At reduced temperature, endocytic membrane traffic is blocked in multivesicular carrier endosomes in rat cardiac myocytes. Eur. J. Cell Biol. 75, 344–352 (1998).

    Article  CAS  Google Scholar 

  19. Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. Oncogene 19, 5620–5635 (2000).

    Article  CAS  Google Scholar 

  20. Cadwaller, K. A., Paterson, H., Macdonald, S. G. & Hancock, J. F. N-terminally myristoylated ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell. Biol. 14, 4722–4730 (1994).

    Article  Google Scholar 

  21. Swift, A. M. & Machamer, C. E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 115, 19–30 (1991).

    Article  CAS  Google Scholar 

  22. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. & Lowy, D. R. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583–586 (1984).

    Article  CAS  Google Scholar 

  23. Voice, J. K., Klemke, R. L., Le, A. & Jackson, J. H. Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J. Biol. Chem. 274, 17164–17170 (1999).

    Article  CAS  Google Scholar 

  24. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    Article  CAS  Google Scholar 

  25. Walsh, A. B. & Bar-Sagi, D. Differential activation of the Rac pathway by Ha-Ras and K-Ras. J. Biol. Chem. 276, 15609–15615 (2001).

    Article  CAS  Google Scholar 

  26. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  Google Scholar 

  27. Marshall, C. J. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  28. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucleotide- releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  Google Scholar 

  29. Lorenzo, P. S. et al. Phorbol esters modulate the Ras exchange factor RasGRP3. Cancer Res. 61, 943–949 (2001).

    CAS  PubMed  Google Scholar 

  30. Liao, F., Shin, H. S. & Rhee, S. G. In vitro tyrosine phosphorylation of PLC-γ1 and PLC-γ2 by src- family protein tyrosine kinases. Biochem. Biophys. Res. Commun. 191, 1028–1033 (1993).

    Article  CAS  Google Scholar 

  31. Hart, K. C., Robertson, S. C. & Donoghue, D. J. Activation of H-ras61L-specific signalling pathways does not require posttranslational processing of H-ras. Exp. Cell Res. 257, 89–100 (2000).

    Article  CAS  Google Scholar 

  32. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  Google Scholar 

  33. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  Google Scholar 

  34. Foos, G., Garcia-Ramirez, J. J., Galang, C. K. & Hauser, C. A. Elevated expression of Ets2 or distinct portions of Ets2 can reverse Ras-mediated cellular transformation. J. Biol. Chem. 273, 18871–18880 (1998).

    Article  CAS  Google Scholar 

  35. Cox, A. D. & Der, C. J. Biological assays for cellular transformation. Methods Enzymol. 238, 277–294 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. DeCamilli, C. Hauser, J. Lippincott-Schwartz, D. Littman and C. Machamer for plasmids, A. Kenworthy for insightful discussions and M. Feoktistov for her excellent technical assistance. We also thank the late and ever-inspiring T. Morimoto for his assistance, advice and unwavering encouragement. This work was supported by National Institutes of Health grants AI36224 and GM55279 and by the Burroughs Wellcome Fund to M.R.P., by NIH grants CA67771 and CA76092 to A.D.C. and a General Clinical Research Center NIH grant, NCRR (M01RR00096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Philips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41556_2002_BFncb783_MOESM1_ESM.mov

Movie 1 Rapid Activation of Palmitoylation-deficient H-Ras on Endomembrane in Response to EGF Receptor Stimulation. (MOV 1480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, V., Bivona, T., Hach, A. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4, 343–350 (2002). https://doi.org/10.1038/ncb783

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing