Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer

A Corrigendum to this article was published on 01 January 2003

Abstract

53BP1 is a conserved nuclear protein that is implicated in the DNA damage response. After irradiation, 53BP1 localizes rapidly to nuclear foci, which represent sites of DNA double strand breaks1,2,3,4, but its precise function is unclear. Using small interference RNA (siRNA), we demonstrate that 53BP1 functions as a DNA damage checkpoint protein. 53BP1 is required for at least a subset of ataxia telangiectasia-mutated (ATM)-dependent phosphorylation events at sites of DNA breaks and for cell cycle arrest at the G2–M interphase after exposure to irradiation. Interestingly, in cancer cell lines expressing mutant p53, 53BP1 was localized to distinct nuclear foci and ATM-dependent phosphorylation of Chk2 at Thr 68 was detected, even in the absence of irradiation. In addition, more than 50% of Chk2 was phosphorylated at Thr 68 in surgically resected lung and breast tumour specimens from otherwise untreated patients. We conclude that the constitutive activation of the DNA damage checkpoint pathway may be linked to the high frequency of p53 mutations in human cancer, as p53 is a downstream target of Chk2 and ATM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 53BP1 regulates ATM-dependent phosphorylation events in response to IR.
Figure 2: Cell cycle checkpoint defects in cells transfected with 53BP1 siRNA.
Figure 3: Constitutive activation of the DNA DSB checkpoint in human cancer cell lines.
Figure 4: Chk2 phosphorylation at Thr 68 in cancer and model of 53BP1 function.

Similar content being viewed by others

References

  1. Schultz, L. B., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. J. Cell Biol. 151, 1381–1390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rappold, I., Iwabuchi, K., Date, T. & Chen, J. J. Cell Biol. 153, 613–620 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson, L., Henderson, C. & Adachi, Y. Mol. Cell. Biol. 21, 1719–1729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia, Z., Morales, J. C., Dunphy, W. G. & Carpenter, P. B. J. Biol. Chem. 276, 2708–2718 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shiloh, Y. & Kastan, M. B. Adv. Cancer Res. 83, 209–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Weinert, T. A. & Hartwell, L. H. Science 241, 317–322 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Vialard, J. E., Gilbert, C. S., Green, C. M. & Lowndes, N. F. EMBO J. 17, 5679–5688 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Science 281, 272–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz, M. F., Duong, J. K., Sun, Z., Morrow, J. S., Pradhan, D. & Stern, D. F. Mol. Cell 9, 1055–1065 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abraham, R. T. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S. T., Xu, B. & Kastan, M. B. Genes Dev. 16, 560–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yazdi, P. T., Wang, Y., Zhao, S., Patel, N., Lee, E. Y. & Qin, J. Genes Dev. 16, 571–582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andegeko, Y., Moyal, L., Mittelman, L., Tsarfaty, I., Shiloh, Y. & Rotman, G. J. Biol. Chem. 276, 38224–38230 (2001).

    CAS  PubMed  Google Scholar 

  16. Xu, B., Kim, S. T., Lim, D. S. & Kastan, M. B. Mol. Cell. Biol. 22, 1049–1059 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vogelstein, B., Lane, D. & Levine, A. J. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bartek, J., Falck, J. & Lukas, J. Nature Rev. Mol. Cell. Biol. 2, 877–886 (2001).

    Article  CAS  Google Scholar 

  19. McGowan, C. H. Bioessays 24, 502–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Bell, D. W. et al. Science 286, 2528–2531 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Meijers-Heijboer, H. et al. Nature Genet. 31, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lukas, C. et al. Cancer Res. 61, 4990–4993 (2001).

    CAS  PubMed  Google Scholar 

  23. Boulton, S. J. et al. Science 295, 127–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Genes Dev. 11, 3387–3400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. Science online (cited 3 October 2002) 10.1126-science.1076182 (2002).

  26. Bartkova, J et al. Cancer Res. 55, 949–956 (1995).

    CAS  PubMed  Google Scholar 

  27. Falck, J., Mailand, N., SyljuÂsen, R. G., Bartek, J. & Lukas, J. Nature 410, 842–847 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Chen, S. J. Elledge, A. Nussenzweig and Y. Shiloh for helpful discussions and communication of unpublished observations. We also thank L. Schultz for her early contribution to this project. This work was supported by grants CA76367 and CA25874 (T.D.H.) and CA09171 (Wistar Institute Training Grant - T.A.M.) from the National Cancer Institute and by grants from the Danish Cancer Society and the European Commission (J.B., M.S. and J.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiri Bartek or Thanos D. Halazonetis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1 Suppression of 53BP1 protein levels by siRNA does not affect the cell cycle profile of non-irradiated cells. (PDF 116 kb)

Figure S2 Suppression of 53BP1 protein levels by siRNA does not affect the γ-H2AX foci present in non-irradiated SAOS2 cells.

Figure S3 Specificity of the immunohistochemistry assay for Chk2 phosphorylation at Thr68.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiTullio, R., Mochan, T., Venere, M. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4, 998–1002 (2002). https://doi.org/10.1038/ncb892

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing