Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new mechanism of allostery in a G protein–coupled receptor dimer

Abstract

SB269652 is to our knowledge the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but it contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction between SB269652 and dopamine from allosteric to competitive by impairing ligand binding to one of the protomers, indicating that the allostery requires D2R dimers. Additional experiments identified a 'bitopic' pose for SB269652 extending from the orthosteric site into a secondary pocket at the extracellular end of the transmembrane (TM) domain, involving TM2 and TM7. Engagement of this secondary pocket was a requirement for the allosteric pharmacology of SB269652. This suggests a new mechanism whereby a bitopic ligand binds in an extended pose on one G protein–coupled receptor protomer to allosterically modulate the binding of a ligand to the orthosteric site of a second protomer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SB269652 is a negative allosteric modulator of the D2R.
Figure 2: Fragments of SB269652 containing the tetrahydroisoquinoline pharmacophore interact with the D2R in an orthosteric manner.
Figure 3: A functional complementation assay demonstrates that SB269652 acts as a negative allosteric modulator across a D2R dimer.
Figure 4: Interaction of the indole moiety with a secondary pocket between TMs 2 and 7 is required for the allosteric pharmacology of SB269652.
Figure 5: When the D2R Glu952.65Ala mutant is expressed as protomer B, the orthosteric antagonist MIPS1500 acts as a negative allosteric modulator across a D2R dimer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jacoby, E., Bouhelal, R., Gerspacher, M. & Seuwen, K. The 7 TM G-protein–coupled receptor target family. ChemMedChem 1, 761–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Lagerström, M.C. & Schiöth, H.B. Structural diversity of G protein–coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kenakin, T. & Miller, L.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mohr, K. et al. Rational design of dualsteric GPCR ligands: quests and promise. Br. J. Pharmacol. 159, 997–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lane, J.R., Sexton, P.M. & Christopoulos, A. Bridging the gap: bitopic ligands of G-protein–coupled receptors. Trends Pharmacol. Sci. 34, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Valant, C. et al. A novel mechanism of G protein–coupled receptor functional selectivity. Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312–29321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antony, J. et al. Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J. 23, 442–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Keov, P. et al. Reverse engineering of the selective agonist TBPB unveils both orthosteric and allosteric modes of action at the M1 muscarinic acetylcholine receptor. Mol. Pharmacol. 84, 425–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Beaulieu, J.-M. & Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Löber, S., Hübner, H., Tschammer, N. & Gmeiner, P. Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends Pharmacol. Sci. 32, 148–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Reavill, C. et al. Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J. Pharmacol. Exp. Ther. 294, 1154–1165 (2000).

    CAS  PubMed  Google Scholar 

  12. Stemp, G. et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D3 receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 43, 1878–1885 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, A., Neumeyer, J.L. & Baldessarini, R.J. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 107, 274–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Silvano, E. et al. The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors. Mol. Pharmacol. 78, 925–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, Y., Moreira, I.S., Urizar, E., Weinstein, H. & Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5, 688–695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong, D. & Strange, P.G. Dopamine D2 receptor dimer formation: evidence from ligand binding. J. Biol. Chem. 276, 22621–22629 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Vivo, M., Lin, H. & Strange, P.G. Investigation of cooperativity in the binding of ligands to the D2 dopamine receptor. Mol. Pharmacol. 69, 226–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Christopoulos, A. & Kenakin, T. G protein–coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Leach, K., Sexton, P.M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Chien, E.Y.T. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newman, A.H. et al. Molecular determinants of selectivity and efficacy at the dopamine D3 receptor. J. Med. Chem. 55, 6689–6699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michino, M. et al. A single glycine in extracellular loop 1 is the critical determinant for pharmacological specificity of dopamine D2 and D3 receptors. Mol. Pharmacol. 84, 854–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferré, S. et al. Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol. 5, 131–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo, W. et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vilardaga, J.-P. et al. Conformational cross-talk between α2A-adrenergic and μ-opioid receptors controls cell signaling. Nat. Chem. Biol. 4, 126–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Dorsch, S., Klotz, K.-N., Engelhardt, S., Lohse, M.J. & Bünemann, M. Analysis of receptor oligomerization by FRAP microscopy. Nat. Methods 6, 225–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Kasai, R.S. et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hern, J.A. et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA 107, 2693–2698 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fonseca, J.M. & Lambert, N.A. Instability of a class A G protein-coupled receptor oligomer interface. Mol. Pharmacol. 75, 1296–1299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Damian, M., Martin, A., Mesnier, D., Pin, J.-P. & Banères, J.-L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albizu, L. et al. Probing the existence of G protein–coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol. Pharmacol. 70, 1783–1791 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Springael, J.-Y. et al. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol. Pharmacol. 69, 1652–1661 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. May, L.T., Bridge, L.J., Stoddart, L.A., Briddon, S.J. & Hill, S.J. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J. 25, 3465–3476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seeman, P. Targeting the dopamine D2 receptor in schizophrenia. Expert Opin. Ther. Targets 10, 515–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Gregory, K.J., Sexton, P.M. & Christopoulos, A. Allosteric modulation of muscarinic acetylcholine receptors. Curr. Neuropharmacol. 5, 157–167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kruse, A.C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bock, A. et al. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat. Commun. 3, 1044 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Kuszak, A.J. et al. Purification and functional reconstitution of monomeric μ-opioid receptors: allosteric modulation of agonist binding by Gi2. J. Biol. Chem. 284, 26732–26741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Whorton, M.R. et al. A monomeric G protein–coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bayburt, T.H., Leitz, A.J., Xie, G., Oprian, D.D. & Sligar, S.G. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Milligan, G. G protein–coupled receptor hetero-dimerization: contribution to pharmacology and function. Br. J. Pharmacol. 158, 5–14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Albizu, L. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, P.S.H., Sum, C.S., Pawagi, A.B. & Wells, J.W. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors. Biochemistry 41, 5588–5604 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Smith, N.J. & Milligan, G. Allostery at G protein–coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol. Rev. 62, 701–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Canals, M. et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278, 46741–46749 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Rashid, A.J. et al. D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 104, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Navarro, G. et al. Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J. Biol. Chem. 284, 28058–28068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carriba, P. et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat. Methods 5, 727–733 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Shonberg, J. et al. A structure-activity analysis of biased agonism at the dopamine D2 receptor. J. Med. Chem. 56, 9199–9221 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Canals, M. et al. A Monod-Wyman-Changeux mechanism can explain G protein–coupled receptor (GPCR) allosteric modulation. J. Biol. Chem. 287, 650–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Yeatman, H.R. et al. Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking. J. Biol. Chem. 289, 15856–15866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A. & Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49, 534–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Cho, A.E., Guallar, V., Berne, B.J. & Friesner, R. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem. 26, 915–931 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bowers, K.J. et al. in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 43 (ACM, New York, 2006).

  56. Motulsky, H.J. & Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: a Practical guide to Curve Fitting (GraphPad Software Inc., San Diego CA., 2003).

  57. Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Nawaratne, V., Leach, K., Felder, C.C., Sexton, P.M. & Christopoulos, A. Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J. Biol. Chem. 285, 19012–19021 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. May, L.T., Leach, K., Sexton, P.M. & Christopoulos, A. Allosteric modulation of G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank TGR BioSciences for generously providing the SureFire ERK1/2 kits. A.C. and P.M.S. are Principal Research Fellows of the National Health and Medical Research Council (NHMRC) of Australia. J.R.L. is a Monash University Larkins Fellow and an R.D. Wright Biomedical Career Development Fellow of the NHMRC. This work was funded in part by NHMRC Program Grant no. APP1055134 (A.C. and P.M.S.), Project Grant no. APP1011920 (J.R.L.), Project Grant APP1049564 (J.R.L. and B.C.) and Australian Research Council Discovery Grant no. DP110100687 (P.J.S. and A.C.). J.R.L. acknowledges the financial support of the Netherlands Organization for Scientific Research (NWO VENI Grant 863.09.018). This work was supported in part by US National Institutes of Health grants DA022413, MH54137 (J.A.J.) and DA023694 (L.S.) and the Lieber Center for Schizophrenia Research and Treatment (J.A.J.). A. Stewart is thanked for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.R.L. conceived and supervised the project, generated receptor mutants and cell lines, performed data analysis, performed radioligand binding and functional assays and wrote the manuscript. P.D. performed complementation assay experiments, generated receptor constructs and wrote the manuscript. J.S. synthesized aripiprazole, SB269652 and its derivatives and wrote the corresponding experimental section. C.J.D.-J. performed radioligand binding and functional assays, generated mutant receptors and cell lines and performed data analysis. S.D. performed functional assays. M.M. conducted docking and homology modeling. L.S. conducted and supervised docking and homology modeling and wrote the manuscript. L.L. planned mutagenesis experiments. P.J.S. planned and supervised chemical synthesis and wrote the manuscript. B.C. planned and supervised chemical synthesis and wrote the manuscript. P.M.S. supervised the project and wrote the manuscript. J.A.J. supervised the project and wrote the manuscript. A.C. conceived and supervised the project, performed data analysis and wrote the manuscript.

Corresponding authors

Correspondence to J Robert Lane or Arthur Christopoulos.

Ethics declarations

Competing interests

A.C. and P.M.S. have a research contract with Servier, France. A.C. has had recent consultancies with Johnson and Johnson (USA) and XOMA (USA) and is a Scientific Advisory Board member for Audeo, Australia.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–6 and Supplementary Tables 1–4. (PDF 1006 kb)

Supplementary Note

Chemical Synthesis and Characterization (PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane, J., Donthamsetti, P., Shonberg, J. et al. A new mechanism of allostery in a G protein–coupled receptor dimer. Nat Chem Biol 10, 745–752 (2014). https://doi.org/10.1038/nchembio.1593

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1593

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research