Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis

Abstract

G protein–coupled receptors (GPCRs) are well known to signal via cyclic AMP (cAMP) production at the plasma membrane, but it is now clear that various GPCRs also signal after internalization. Apart from its temporal impact through prolonging the cellular response, we wondered whether the endosome-initiated signal encodes any discrete spatial information. Using the β2-adrenoceptor (β2-AR) as a model, we show that endocytosis is required for the full repertoire of downstream cAMP-dependent transcriptional control. Next, we describe an orthogonal optogenetic approach to definitively establish that the location of cAMP production is indeed the critical variable determining the transcriptional response. Finally, our results suggest that this spatial encoding scheme helps cells functionally discriminate chemically distinct β2-AR ligands according to differences in their ability to promote receptor endocytosis. These findings reveal a discrete principle for achieving cellular signaling specificity based on endosome-mediated spatial encoding of intracellular second messenger production and ′location-aware′ downstream transcriptional control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytosis of β2-AR is required for cAMP accumulation and transcriptional response.
Figure 2: The β2-AR transcriptional response does not require receptor recycling.
Figure 3: Transcriptional signaling is not monotonically related to net cAMP levels.
Figure 4: Localized cAMP production causes distinct transcriptional responses.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein–coupled receptors. PLoS Biol. 7, e1000172 (2009).

    Article  Google Scholar 

  2. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  Google Scholar 

  3. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  Google Scholar 

  4. Kotowski, S.J., Hopf, F.W., Seif, T., Bonci, A. & von Zastrow, M. Endocytosis promotes rapid dopaminergic signaling. Neuron 71, 278–290 (2011).

    Article  CAS  Google Scholar 

  5. Lohse, M.J. & Calebiro, D. Cell biology: receptor signals come in waves. Nature 495, 457–458 (2013).

    Article  CAS  Google Scholar 

  6. Violin, J.D. et al. β2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949–2961 (2008).

    Article  CAS  Google Scholar 

  7. Fan, F. et al. Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3, 346–351 (2008).

    Article  CAS  Google Scholar 

  8. Rajagopal, S. et al. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80, 367–377 (2011).

    Article  CAS  Google Scholar 

  9. Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459–4464 (2005).

    Article  CAS  Google Scholar 

  10. Harper, C.B., Popoff, M.R., McCluskey, A., Robinson, P.J. & Meunier, F.A. Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol. 23, 90–101 (2013).

    Article  CAS  Google Scholar 

  11. O′Brien, R.M., Printz, R.L., Halmi, N., Tiesinga, J.J. & Granner, D.K. Structural and functional analysis of the human phosphoenolpyruvate carboxykinase gene promoter. Biochim. Biophys. Acta 1264, 284–288 (1995).

    Article  Google Scholar 

  12. Waxman, J.S., Hocking, A.M., Stoick, C.L. & Moon, R.T. Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development 131, 5909–5921 (2004).

    Article  CAS  Google Scholar 

  13. Zhang, L. et al. Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 306, 114–117 (2004).

    Article  CAS  Google Scholar 

  14. Daaka, Y. et al. Essential role for G protein–coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

    Article  CAS  Google Scholar 

  15. Shenoy, S.K. et al. β-arrestin-dependent, G protein–independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    Article  CAS  Google Scholar 

  16. Seamon, K.B., Padgett, W. & Daly, J.W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78, 3363–3367 (1981).

    Article  CAS  Google Scholar 

  17. Pippig, S., Andexinger, S. & Lohse, M.J. Sequestration and recycling of β2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666–676 (1995).

    CAS  PubMed  Google Scholar 

  18. Puthenveedu, M.A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).

    Article  CAS  Google Scholar 

  19. Lauffer, B.E. et al. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol. 190, 565–574 (2010).

    Article  CAS  Google Scholar 

  20. Johnson, L.S., Dunn, K.W., Pytowski, B. & McGraw, T.E. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor′s internalization motif. Mol. Biol. Cell 4, 1251–1266 (1993).

    Article  CAS  Google Scholar 

  21. Presley, J.F., Mayor, S., McGraw, T.E., Dunn, K.W. & Maxfield, F.R. Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling. J. Biol. Chem. 272, 13929–13936 (1997).

    Article  CAS  Google Scholar 

  22. Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    Article  CAS  Google Scholar 

  23. Kasahara, K. et al. Trafficking of Lyn through the Golgi caveolin involves the charged residues on αE and αI helices in the kinase domain. J. Cell Biol. 165, 641–652 (2004).

    Article  CAS  Google Scholar 

  24. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  25. Young, R.M., Holowka, D. & Baird, B. A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J. Biol. Chem. 278, 20746–20752 (2003).

    Article  CAS  Google Scholar 

  26. Goldstein, D.S., Eisenhofer, G. & Kopin, I.J. Sources and significance of plasma levels of catechols and their metabolites in humans. J. Pharmacol. Exp. Ther. 305, 800–811 (2003).

    Article  CAS  Google Scholar 

  27. Swaminath, G. et al. Sequential binding of agonists to the β2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004).

    Article  CAS  Google Scholar 

  28. Choy, R.W. et al. Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82, 55–62 (2014).

    Article  CAS  Google Scholar 

  29. Cosker, K.E. & Segal, R.A. Neuronal signaling through endocytosis. Cold Spring Harb. Perspect. Biol. 6, a020669 (2014).

    Article  Google Scholar 

  30. Murphy, J.E., Padilla, B.E., Hasdemir, B., Cottrell, G.S. & Bunnett, N.W. Endosomes: a legitimate platform for the signaling train. Proc. Natl. Acad. Sci. USA 106, 17615–17622 (2009).

    Article  CAS  Google Scholar 

  31. Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    Article  CAS  Google Scholar 

  32. Taylor, S.S., Zhang, P., Steichen, J.M., Keshwani, M.M. & Kornev, A.P. PKA: lessons learned after twenty years. Biochim. Biophys. Acta 1834, 1271–1278 (2013).

    Article  CAS  Google Scholar 

  33. Sample, V. et al. Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat. Chem. Biol. 8, 375–382 (2012).

    Article  CAS  Google Scholar 

  34. Pontier, S.M. et al. Cholesterol-dependent separation of the β2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J. Biol. Chem. 283, 24659–24672 (2008).

    Article  CAS  Google Scholar 

  35. Perino, A., Ghigo, A., Scott, J.D. & Hirsch, E. Anchoring proteins as regulators of signaling pathways. Circ. Res. 111, 482–492 (2012).

    Article  CAS  Google Scholar 

  36. Ostrom, R.S., Bogard, A.S., Gros, R. & Feldman, R.D. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn Schmiedebergs Arch. Pharmacol. 385, 5–12 (2012).

    Article  CAS  Google Scholar 

  37. Kholodenko, B.N. & Kolch, W. Giving space to cell signaling. Cell 133, 566–567 (2008).

    Article  CAS  Google Scholar 

  38. Temkin, P. et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat. Cell Biol. 13, 715–721 (2011).

    Article  Google Scholar 

  39. Burgess, A. et al. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc. Natl. Acad. Sci. USA 107, 12564–12569 (2010).

    Article  CAS  Google Scholar 

  40. Backes, C. et al. GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res. 35, W186–W192 (2007).

    Article  Google Scholar 

  41. Saldanha, A.J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Brown for generously providing access to microarray facilities; P. Hegemann, H. Stenmark and T. Meyer for plasmids; D. Udwari and T. Oertner for initially suggesting the use of bPAC; and H. Bourne, B. Cheyette, R. Irannejad, B. Lobingier, A. Marley and D. Riordan for valuable discussion. These studies were supported by the National Institute on Drug Abuse of the US National Institutes of Health (DA010711 and DA012864 to M.v.Z.). N.G.T. is supported by the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

N.G.T. performed the experiments and analyzed the data. N.G.T. and M.v.Z. designed the study, interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Mark von Zastrow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–5. (PDF 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetanova, N., von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10, 1061–1065 (2014). https://doi.org/10.1038/nchembio.1665

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing