Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

Abstract

Protein phosphorylation transduces a large set of intracellular signals. One mechanism by which phosphorylation mediates signal transduction is by prompting conformational changes in the target protein or interacting proteins. Previous work described an allosteric site mediating phosphorylation-dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal and in solution using a fluorescence-based assay and deuterium exchange experiments. Our results indicate that the binding of the compound produces local changes at the target site, the PIF binding pocket, and also allosteric changes at the ATP binding site and the activation loop. Altogether, we present molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of apo-PDK1 and PS48-bound PDK1 in the crystal form II.
Figure 2: Deuterium incorporation levels in the presence and absence of PS08.
Figure 3: Molecular insight into the activation of PDK1 by HM-polypeptides and small compounds.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  Google Scholar 

  2. Johnson, L.N. & Lewis, R.J. Structural basis for control by phosphorylation. Chem. Rev. 101, 2209–2242 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pawson, T. & Scott, J.D. Protein phosphorylation in signaling–50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  5. Pearl, L.H. & Barford, D. Regulation of protein kinases in insulin, growth factor and Wnt signalling. Curr. Opin. Struct. Biol. 12, 761–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Biondi, R.M. & Nebreda, A.R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem. J. 372, 1–13 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newton, A.C. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 101, 2353–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Biondi, R.M. et al. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 19, 979–988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frodin, M., Jensen, C.J., Merienne, K. & Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 19, 2924–2934 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, J. et al. Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell 9, 1227–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, J. et al. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. 9, 940–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Frodin, M. et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 21, 5396–5407 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  15. Newton, A.C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parker, P.J. & Parkinson, S.J. AGC protein kinase phosphorylation and protein kinase C. Biochem. Soc. Trans. 29, 860–863 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Hauge, C. et al. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J. 26, 2251–2261 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biondi, R.M. et al. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 21, 4219–4228 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Biondi, R.M. Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem. Sci. 29, 136–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Biondi, R.M., Kieloch, A., Currie, R.A., Deak, M. & Alessi, D.R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 20, 4380–4390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, B.J., Deak, M., Arthur, J.S., Armit, L.J. & Alessi, D.R. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 22, 4202–4211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Collins, B.J., Deak, M., Murray-Tait, V., Storey, K.G. & Alessi, D.R. In vivo role of the phosphate groove of PDK1 defined by knockin mutation. J. Cell Sci. 118, 5023–5034 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Knighton, D.R. et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253, 407–414 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Huang, X. et al. Crystal structure of an inactive akt2 kinase domain. Structure 11, 21–30 (2003).

    Article  PubMed  Google Scholar 

  25. Smith, K.J. et al. The structure of MSK1 reveals a novel autoinhibitory conformation for a dual kinase protein. Structure 12, 1067–1077 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Jacobs, M. et al. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J. Biol. Chem. 281, 260–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, B. et al. Crystal structure of the kinase domain of serum and glucocorticoid-regulated kinase 1 in complex with AMP PNP. Protein Sci. 16, 2761–2769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engel, M. et al. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J. 25, 5469–5480 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stroba, A. et al. 3,5-diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterisation of binding as paradigms for PIF-binding pocket-targeting compounds. J. Med. Chem. 52, 4683–4693 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Filippakopoulos, P. et al. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134, 793–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, X., Gureasko, J., Shen, K., Cole, P.A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  Google Scholar 

  32. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  33. Kabsch, W. Automatic-indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  34. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  37. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Schaeffer, F. et al. Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41, 2106–2114 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Haouz for help with the crystallization screening, F. Saul for crystallography advice, J. Imig for help setting up the conditions for the TNP-ATP assay and I. Adrian for excellent technical assistance. We give special thanks to R.W. Hartmann, R. Zimmermann and R. Bernhardt (University of Saarland), and to A. Scheidig (University of Kiel) for support for our research project. We acknowledge the financial support of the Europrofession Foundation (Saarbrücken, Germany), the Deutsche Krebshilfe (107875), Deutsche Forschungsgemeinschaft (BI 1044/2-2) and Bundesministerium für Bildung und Forschung (Go-Bio). We are grateful to N. Huntington for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S. synthesized compounds under the direction of M.E. H.Z. performed deuterium exchange experiments under the direction of D.H. and T.J.D.J. A.S. and V.H. performed the ITC experiments under the supervision of F.S. V.H. performed crystallography work under the supervision of P.M.A. S.Z. gave general advice. L.I., L.A.L.-G. and V.H. performed protein purifications for crystallography work. L.A.L.-G. and V.H. performed TNP-ATP assays, purified GST fusion proteins and performed other biochemical experiments. R.M.B. supervised the protein production, general molecular biology, TNP-ATP assays, all additional biochemical work and the overall research project. The manuscript was written by R.M.B. with the support of V.H., H.Z. and P.M.A.

Corresponding author

Correspondence to Ricardo M Biondi.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hindie, V., Stroba, A., Zhang, H. et al. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1. Nat Chem Biol 5, 758–764 (2009). https://doi.org/10.1038/nchembio.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing