Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling of receptor conformation and ligand orientation determine graded activity

Abstract

Small molecules stabilize specific protein conformations from a larger ensemble, enabling molecular switches that control diverse cellular functions. We show here that the converse also holds true: the conformational state of the estrogen receptor can direct distinct orientations of the bound ligand. 'Gain-of-allostery' mutations that mimic the effects of ligand in driving protein conformation allowed crystallization of the partial agonist ligand WAY-169916 with both the canonical active and inactive conformations of the estrogen receptor. The intermediate transcriptional activity induced by WAY-169916 is associated with the ligand binding differently to the active and inactive conformations of the receptor. Analyses of a series of chemical derivatives demonstrated that altering the ensemble of ligand binding orientations changes signaling output. The coupling of different ligand binding orientations to distinct active and inactive protein conformations defines a new mechanism for titrating allosteric signaling activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An energy landscape model of ligand binding.
Figure 2: WAY-169916 is an ERα-partial agonist.
Figure 3: The structure of WAY-169916 bound to the active conformation of ERα.
Figure 4: An unconstrained inactive conformation of ERα shows two nonoverlapping orientations of WAY-169916.
Figure 5: Protein substates define a pathway of ligand dynamics.
Figure 6: Activity profiles of WAY-169916 derivatives.
Figure 7: Ligand binding ensembles direct ERα activity profiles.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Onuchic, J.N., Luthey-Schulten, Z. & Wolynes, P.G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  CAS  Google Scholar 

  2. Boehr, D.D., Dyson, H.J. & Wright, P.E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

    Article  CAS  Google Scholar 

  3. Popovych, N., Sun, S., Ebright, R.H. & Kalodimos, C.G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006).

    Article  CAS  Google Scholar 

  4. Eisenmesser, E.Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  5. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  6. Luque, I., Leavitt, S.A. & Freire, E. The linkage between protein folding and functional cooperativity: two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct. 31, 235–256 (2002).

    Article  CAS  Google Scholar 

  7. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  Google Scholar 

  8. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  Google Scholar 

  9. Xu, H.E. et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415, 813–817 (2002).

    Article  CAS  Google Scholar 

  10. Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  11. Weber, G. Ligand binding and internal equilibria in proteins. Biochemistry 11, 864–878 (1972).

    Article  CAS  Google Scholar 

  12. Seeliger, M.A. et al. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 15, 299–311 (2007).

    Article  CAS  Google Scholar 

  13. Margarit, S.M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  Google Scholar 

  14. Milburn, M.V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article  CAS  Google Scholar 

  15. Sablin, E.P. & Fletterick, R.J. Nucleotide switches in molecular motors: structural analysis of kinesins and myosins. Curr. Opin. Struct. Biol. 11, 716–724 (2001).

    Article  CAS  Google Scholar 

  16. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  Google Scholar 

  17. Velyvis, A., Yang, Y.R., Schachman, H.K. & Kay, L.E. A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA 104, 8815–8820 (2007).

    Article  CAS  Google Scholar 

  18. Steitz, T.A. Visualizing polynucleotide polymerase machines at work. EMBO J. 25, 3458–3468 (2006).

    Article  CAS  Google Scholar 

  19. Bramlett, K.S. et al. A natural product ligand of the oxysterol receptor, liver X receptor. J. Pharmacol. Exp. Ther. 307, 291–296 (2003).

    Article  CAS  Google Scholar 

  20. Yamasaki, K. et al. Comparison of reporter gene assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology 170, 21–30 (2002).

    Article  CAS  Google Scholar 

  21. Bhavnani, B.R. Pharmacokinetics and pharmacodynamics of conjugated equine estrogens: chemistry and metabolism. Proc. Soc. Exp. Biol. Med. 217, 6–16 (1998).

    Article  CAS  Google Scholar 

  22. Lewis, J.A., Lebois, E.P. & Lindsley, C.W. Allosteric modulation of kinases and GPCRs: design principles and structural diversity. Curr. Opin. Chem. Biol. 12, 269–280 (2008).

    Article  CAS  Google Scholar 

  23. Darimont, B.D. et al. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    Article  CAS  Google Scholar 

  24. Brzozowski, A.M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  CAS  Google Scholar 

  25. Renaud, J.P. et al. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

    Article  CAS  Google Scholar 

  26. Chadwick, C.C. et al. Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc. Natl. Acad. Sci. USA 102, 2543–2548 (2005).

    Article  CAS  Google Scholar 

  27. Steffan, R.J. et al. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem. 47, 6435–6438 (2004).

    Article  CAS  Google Scholar 

  28. Nettles, K.W. et al. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol. 4, 241–247 (2008).

    Article  CAS  Google Scholar 

  29. Weis, K.E., Ekena, K., Thomas, J.A., Lazennec, G. & Katzenellenbogen, B.S. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10, 1388–1398 (1996).

    CAS  PubMed  Google Scholar 

  30. Zhou, H.B. et al. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Chem. Biol. 14, 659–669 (2007).

    Article  CAS  Google Scholar 

  31. Nettles, K.W. et al. Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO Rep. 8, 563–568 (2007).

    Article  CAS  Google Scholar 

  32. Atwell, S. et al. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J. Biol. Chem. 279, 55827–55832 (2004).

    Article  CAS  Google Scholar 

  33. Norman, B.H. et al. Benzopyrans are selective estrogen receptor beta agonists with novel activity in models of benign prostatic hyperplasia. J. Med. Chem. 49, 6155–6157 (2006).

    Article  CAS  Google Scholar 

  34. Bruning, J.B. et al. Partial agonists activate PPARgamma using a helix 12 independent mechanism. Structure 15, 1258–1271 (2007).

    Article  CAS  Google Scholar 

  35. Angell, R.M. et al. Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes. Bioorg. Med. Chem. Lett. 18, 4433–4437 (2008).

    Article  CAS  Google Scholar 

  36. Gelman, L., Feige, J.N. & Desvergne, B. Molecular basis of selective PPARgamma modulation for the treatment of Type 2 diabetes. Biochim. Biophys. Acta 1771, 1094–1107 (2007).

    Article  CAS  Google Scholar 

  37. Kalaany, N.Y. & Mangelsdorf, D.J. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu. Rev. Physiol. 68, 159–191 (2006).

    Article  CAS  Google Scholar 

  38. Schäcke, H. et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc. Natl. Acad. Sci. USA 101, 227–232 (2004).

    Article  Google Scholar 

  39. Shiau, A.K. et al. Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat. Struct. Biol. 9, 359–364 (2002).

    CAS  PubMed  Google Scholar 

  40. Love, J.D. et al. The structural basis for the specificity of retinoid-X receptor-selective agonists: new insights into the role of helix H12. J. Biol. Chem. 277, 11385–11391 (2002).

    Article  CAS  Google Scholar 

  41. Shan, L. et al. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism. Mol. Cell 16, 907–917 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stols, L. et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr. Purif. 25, 8–15 (2002).

    Article  CAS  Google Scholar 

  43. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  45. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  46. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  47. Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K. & Noble, M. The CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 58, 1955–1957 (2002).

    Article  Google Scholar 

  48. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health PHS R37 DK15556 (J.A.K.), DK53002 (C.L.S.), CA132022 and DK077085 (K.W.N.) and the Frenchman's Creek Women for Cancer Research (G.G.). We would like to thank J. Cleveland for comments on the manuscript, L. Potterton and S. McNicholas (University of York) for help with CCP4MG and K. Carlson (University of Illinois) for performing the ERα ligand-binding assays.

Author information

Authors and Affiliations

Authors

Contributions

A.A.P. synthesized compounds, G.G. and M.C.P. performed cell-based assays, J.B.B., A.A.P., M.Z., J.N. and P.V.A. performed X-ray crystallography and data analysis, A.A.P., J.B.B., C.L.S., P.D.A., J.A.K. and K.W.N. designed and supervised experiments, and K.W.N. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Kendall W Nettles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods and Supplementary Results (PDF 5872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruning, J., Parent, A., Gil, G. et al. Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 6, 837–843 (2010). https://doi.org/10.1038/nchembio.451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing