Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric control of an ionotropic glutamate receptor with an optical switch

Abstract

The precise regulation of protein activity is fundamental to life. The allosteric control of an active site by a remote regulatory binding site is a mechanism of regulation found across protein classes, from enzymes to motors to signaling proteins. We describe a general approach for manipulating allosteric control using synthetic optical switches. Our strategy is exemplified by a ligand-gated ion channel of central importance in neuroscience, the ionotropic glutamate receptor (iGluR). Using structure-based design, we have modified its ubiquitous clamshell-type ligand-binding domain to develop a light-activated channel, which we call LiGluR. An agonist is covalently tethered to the protein through an azobenzene moiety, which functions as the optical switch. The agonist is reversibly presented to the binding site upon photoisomerization, initiating clamshell domain closure and concomitant channel gating. Photoswitching occurs on a millisecond timescale, with channel conductances that reflect the photostationary state of the azobenzene at a given wavelength. Our device has potential uses not only in biology but also in bioelectronics and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of an allosteric photoswitch.
Figure 2: Structures and fit of photoswitched agonist and iGluR6 LBD.
Figure 3: Calcium imaging of iGluR6 activity.
Figure 4: Whole-cell patch-clamp current recordings from HEK293 cells expressing iGluR6-L439C after conjugation of MAG.

Similar content being viewed by others

References

  1. Feringa, B.L. Ed. Molecular Switches. (Wiley-VCH, Weinheim, Germany, 2001).

    Book  Google Scholar 

  2. Goeldner, M. & Givens, R. Dynamic Studies in Biology. (Wiley-VCH, Weinheim, Germany, 2005).

    Book  Google Scholar 

  3. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H. & Erlanger, B.F. Covalently bound photoisomerizable agonist - Comparison with reversibly bound agonists at electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kocer, A., Walko, M., Meijberg, W. & Feringa, B.L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paas, Y. The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci. 21, 117–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  8. Pin, J.P., Galvez, T. & Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. Eds. Principles of Neural Science Ed. 4. (McGraw-Hill, New York, 2000).

    Google Scholar 

  10. Erreger, K., Chen, P.E., Wyllie, D.J. & Traynelis, S.F. Glutamate receptor gating. Crit. Rev. Neurobiol. 16, 187 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Mayer, M.L. Crystal structures of the GluR5 and GluR6 ligand binding cores: Molecular mechanisms underlying kainate receptor selectivity. Neuron 45, 539–552 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nanao, M.H., Green, T., Stern-Bach, Y., Heinemann, S.F. & Choe, S. Structure of the kainate receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc. Natl. Acad. Sci. USA 102, 1708–1713 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johansen, T.N., Greenwood, J.R., Frydenvang, K., Madsen, U. & Krogsgaard-Larsen, P. Stereostructure-activity studies on agonists, at the AMPA and kainate subtypes of ionotropic glutamate receptors. Chirality 15, 167–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Pedregal, C. et al. 4-alkyl- and 4-cinnamylglutamic acid analogues are potent GluR5 kainate receptor agonists. J. Med. Chem. 43, 1958–1968 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P.H. Determinants of Ca2+ permeability in both TM1 and TM2 of high-affinity kainate receptor channels - diversity by RNA editing. Neuron 10, 491–500 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca-2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  18. Knoll, H. in CRC Handbook of Organic Photochemistry and Photobiology (eds. Horspool, W., & Lenci, F.) Vol. 89, 1–89 (CRC, Boca Raton, Florida, 2004).

    Google Scholar 

  19. Jin, R.S., Banke, T.G., Mayer, M.L., Traynelis, S.F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kercher, M.A., Lu, P. & Lewis, M. Lac repressor operator complex. Curr. Opin. Struct. Biol. 7, 76–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22, 2873–2885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, X. et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Bayley, H. & Jayasinghe, L. Functional engineered channels and pores. Mol. Membr. Biol. 21, 209–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Dwyer, M.A. & Hellinga, H.W. Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr. Opin. Struct. Biol. 14, 495–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Willner, I. & Willner, B. Molecular and biomolecular optoelectronics. Pure Appl. Chem. 73, 535–542 (2001).

    Article  CAS  Google Scholar 

  27. Balzani, A.C.V. & Venturi, M. Molecular Devices and Machines: A Journey Into the Nanoworld (Wiley-VCH, Weinheim, Germany, 2003).

    Book  Google Scholar 

  28. Wilding, T.J. & Huettner, J.E. Activation and desensitization of hippocampal kainate receptors. J. Neurosci. 17, 2713–2721 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Partin, K.M., Patneau, D.K., Winters, C.A., Mayer, M.L. & Buonanno, A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin-A. Neuron 11, 1069–1082 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Ezquerra, J. et al. Stereoselective reactions of lithium enolates derived from N-Boc protected pyroglutamic esters. Tetrahedron 49, 8665–8678 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Partin for the iGluR6 cDNA and for advice, T. Machen for guidance on calcium imaging and S. Szobota for participation in initial imaging experiments. P.G. was supported by postdoctoral fellowships from the Generalitat de Catalunya (Nanotechnology Program), Ministerio de Educación y Ciencia (Spain) and the Human Frontier Science Program. R.N. was supported by a postdoctoral fellowship from the Japan Society for the Promotion of Science. This work was supported by a Laboratory Directed Research Development Award from the Lawrence Berkeley National Laboratory and by a grant from the Human Frontier Science Program. D.T. thanks Eli Lilly, Astra Zeneca, Glaxo Smith Kline, Amgen and Merck & Co. for Young Investigator Awards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ehud Y Isacoff or Dirk Trauner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volgraf, M., Gorostiza, P., Numano, R. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2, 47–52 (2006). https://doi.org/10.1038/nchembio756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing