Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia

Abstract

Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL)1,2, the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic mutation profiles of 105 CLL exomes.
Figure 2: Structural impact of SF3B1 alterations.
Figure 3: Novel alternative splicing of FOXP1 in CLL cases.
Figure 4: Clinical analysis of SF3B1 in CLL.

Similar content being viewed by others

References

  1. Rozman, C. & Montserrat, E. Chronic lymphocytic leukemia. N. Engl. J. Med. 333, 1052–1057 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Zenz, T., Mertens, D., Kuppers, R., Dohner, H. & Stilgenbauer, S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat. Rev. Cancer 10, 37–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Damle, R.N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).

    CAS  PubMed  Google Scholar 

  4. Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  5. Puente, X.S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pleasance, E.D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Pleasance, E.D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Greif, P.A. et al. Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing. Leukemia 25, 821–827 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, H., Nora, G.J., Ghodke, H. & Opresko, P.L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 286, 7479–7489 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Marfella, C.G. & Imbalzano, A.N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prazeres, H. et al. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 30, 1302–1317 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, X. et al. Sequence analysis of 515 kinase genes in chronic lymphocytic leukemia. Leukemia published online (24 June 2011), doi:10.1038/leu.2011.163.

  17. Zainuddin, N. et al. TP53 mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk. Res. 35, 272–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Folco, E.G., Coil, K.E. & Reed, R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 25, 440–444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Golas, M.M., Sander, B., Will, C.L., Luhrmann, R. & Stark, H. Molecular architecture of the multiprotein splicing factor SF3b. Science 300, 980–984 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. David, C.J. & Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golan-Gerstl, R. et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res. 71, 4464–4472 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Visconte, V. et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia published online (2 September 2011), doi:10.1038/leu.2011.232.

  29. Chen, A.A. et al. Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 30, 977–981 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bulwin, G.C. et al. TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. J. Immunol. 177, 6833–6841 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, P.J. et al. Potentially oncogenic B-cell activation–induced smaller isoforms of FOXP1 are highly expressed in the activated B cell–like subtype of DLBCL. Blood 111, 2816–2824 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Hudson, T.J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baudot, A., de la Torre, V. & Valencia, A. Mutated genes, pathways and processes in tumours. EMBO Rep. 11, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Schaefer, C.F. et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674–D679 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, S. & Zhang, Y. MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72, 547–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peto, R. & Pike, M.C. Conservatism of the approximation sigma (O-E)2-E in the logrank test for survival data or tumor incidence data. Biometrics 29, 579–584 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Klatt for continuous support, E. Montserrat, J. Valcárcel, P. Nicolás and C. Romeo-Casabona for helpful comments, S. Guijarro, S. Martín, C. Capdevila, M. Sánchez and L. Plá for excellent technical assistance, and N. Villahoz and C. Muro for excellent work in the coordination of the CLL Spanish Consortium. We are also very grateful to all the individuals with CLL who participated in this study. This work was funded by the Spanish Ministry of Science and Innovation (MICINN) through the Instituto de Salud Carlos III (ISCIII) and Red Temática de Investigación del Cáncer (RTICC) del ISCIII. C.L-O. is an Investigator of the Botín Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V.Q., G.R.O., A.J.R., G.V., J.M.P.F. and X.S.P. developed the bioinformatic algorithms and performed the analysis of sequence data. L.C., P.J., M.P., M.L.-G., D.C. and A.N. were responsible for downstream validation analysis and functional studies. L.B., S.B. and J.M.C.T. studied structural variants. D.A.P., H.H., M.B., S.H. and M.G. were responsible for generating libraries, performing exome capture and running sequencers. M.A. prepared and supervised the bioethics requirements. N.V., A.M.-T., T.B., J.D., E.G., A.L.-G. and E.C. performed clinical and biological studies. M.R., M.G.-D., N.V. and J.M.H. reviewed the pathologic data and confirmed the diagnosis. R.R., J.L.G., M.O., D.G.P., J.Z., M.V. and A.V. were in charge of bioinformatics data management. I.G. coordinated the sequencing efforts and performed primary data analysis. V.Q., X.S.P., X.E., A. L.-G., E.C. and C.L.-O. directed the research and wrote the manuscript, which all authors have approved.

Corresponding authors

Correspondence to Elías Campo or Carlos López-Otín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–3 and Supplementary Tables 1–3 and 5–16 (PDF 634 kb)

Supplementary Table 4

Somatic mutations in CLL patients (XLSX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quesada, V., Conde, L., Villamor, N. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44, 47–52 (2012). https://doi.org/10.1038/ng.1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1032

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer