Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids

Abstract

Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in humans. It is a small (16.5kb) genome which encodes 13 essential peptides of the respiratory chain, two rRNAs and 22 tRNAs. Defects of this genome are now recognized as important causes of disease and may take the form of point mutations or rearrangements1–3. There is no effective treatment for patients with mtDNA mutations4. In the majority of patients with mtDNA defects, both mutant and wild-type molecules are present in the same cell — a phenomenon known as intracellular heteroplasmy. In addition, in the presence of heteroplasmy there is a threshold whereby a certain level of mutant mtDNA is necessary before the disease becomes biochemically and clinically apparent5–7. Based on the presence of heteroplasmy and the recessive nature of these mutations, we believe it will be possible to treat patients by selectively inhibiting the replication of the mutant mtDNA, thereby allowing propagation of only the wild-type molecule. To confirm the validity of such an approach we synthesized peptide nucleic acids (PNAs) complementary to human mtDNA templates containing a deletion breakpoint or single base mutation, both mutatins well documented to cause disease. Using an in vitro replication run-off assay under physiological conditions, the antigenomic PNAs specifically inhibited replication of mutant but not wild-type mtDNA templates. Furthermore, we have shown uptake of these PNAs into cultured human myoblasts. We believe that we have therefore established the potential value of antigenomic PNA therapy for patients with heteroplasmic mtDNA disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wallace, D.C. Diseases of the mitochondrial DNA Annu. Rev. Biochem. 61, 1175–1212 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Johns, D.R. Mitochondrial DNA and disease. New Engl. J. Med. 333, 638–644 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Wallace, D.C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Chrzanowska-Lightowlers, Z.M.A., Lightowlers, R.N. & Turnbull, D.M., Therapy for mitochondrial DNA defects: is it possible? Gene Therapy 2, 311–316 (1995).

    CAS  PubMed  Google Scholar 

  5. Boulet, L., Karpati, G. & Shoubridge, E.A. Distribution and threshold expression of the tRNALys mutation in skeletal muscle of patients with myoclonus epilepsy and ragged-red fibres (MERRF). Am. J. Hum. Genet. 51, 1187–1200 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chomyn, A. et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream or downstream mature transcripts. Proc. Natl. Acad Sci. USA 89, 4221–225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. King, M.P., Koga, Y., Davidson, M. & Schon, E.A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNALeu (UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. Mol. Cell. Biol. 12, 480–490 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clayton, D.A. Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem. Sci. 16, 107–111 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Clayton, D.A. Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol. 141, 217–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Egholm, M., Buchardt, O., Nielsen, P.E. & Berg, R.H. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Article  CAS  Google Scholar 

  12. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Demidov, V.V. et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Holt, I.J., Harding, A.E. & Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Moraes, C.T. et al. Mitochondrial DNA deletions in progressive external opthalmoplegia and Kearns-Sayre syndrome. New Engl. J. Med. 320, 1293–1299 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Schon, E.A. et al. A direct repeat is ahotspot for large-scale deletion of human mitochondrial DNA. Science 244, 346–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Orum, H. et al. Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res. 21, 5332–5336 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong, T.W. & Clayton, D.A. Isolation and characterization of a DNA primase from human mitochondria. J. Biol. Chem. 260, 11530–11536 (1985).

    CAS  PubMed  Google Scholar 

  19. Shoffner, J.M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61, 931–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Silvestri, G. et al. Clinical features associated with the A→G transition at nucleotide 8344 of mtDNA (“MERRF mutation”;). Neurology 43, 1200–1206 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Curth, U. et al. Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur. J. Biochem. 221, 435–443 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Hoke, G.D., Pavco, P.A., Ledwith, B.J. & Van Tuyle, G.C. Structural and functional studies of the rat mitochondrial single strand DNA binding protein P16. Arch. Biochem. Biophys. 282, 116–124 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Genuario, R. & Wong, T.W. Stimulation of DNA polymerase gamma by a mitochondrial single-strand DNA binding protein. Cell. Mol. Biol. Res. 39, 625–634 (1993).

    CAS  PubMed  Google Scholar 

  24. Williams, A.J. & Kaguni, L.S. Stimulation of Drosophilamitochondrial DNA polymerase by single-stranded DNA-binding protein. J. Biol. Chem. 270, 860–865 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Lohman, T.M. & Overman, L.B. Two binding modes in Escherichia colisingle strand binding protein-single stranded DNA complexes. J. Biol. Chem. 260, 3594–3603 (1985).

    CAS  PubMed  Google Scholar 

  26. Vestweber, D. & Schatz, G. DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338, 170–172 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Seibel, P. et al. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucl. Acids Res. 23, 10–17 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torroni, A. et al. About the “Asian”-specific 9-bp deletion of mtDNA. Am. J. Hum. Genet. 57, 507–508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson, S. et al. Sequence and organisation of the human mitochondrial genome. Nature 290, 457–465 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglass M. Turnbull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R., Chinnery, P., Turnbull, D. et al. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15, 212–215 (1997). https://doi.org/10.1038/ng0297-212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0297-212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing