Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy

A Correction to this article was published on 01 September 1997

Abstract

Stargardt disease (STGD, also known as fundus flavimaculatus; FFM) is an autosomal recessive retinal disorder characterized by a juvenile-onset macular dystrophy, alterations of the peripheral retina, and subretinal deposition of lipofuscin-like material. A gene encoding an ATP-binding cassette (ABC) transporter was mapped to the 2-cM (centiMorgan) interval at 1p13-p21 previously shown by linkage analysis to harbour the STGD gene. This gene, ABCR, is expressed exclusively and at high levels in the retina, in rod but not cone photoreceptors, as detected by in situ hybridization. Mutational analysis of ABCR in STGD families revealed a total of 19 different mutations including homozygous mutations in two families with consanguineous parentage. These data indicate that ABCR is the causal gene of STGD/FFM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. National Advisory Eye Council. Vision Research, a National Plan, 1994-1998. National Institutes of Health publication 93–3186 (1993).

  2. Blacharski, P.A. Fundus flavimaculatus. in Retinal dystrophies and degenerations,(ed. Newsome, D.A.) 135–159 (New York: Raven Press, 1988).

    Google Scholar 

  3. Stargardt, K. U¨ber fämiliare, progressive degeneration in der maculagegend des auges. Albrechtvon Graefes. Arch Klin. Exp. Ophthalmol. 71, 534–550 (1909).

    Article  Google Scholar 

  4. Anderson, K.L. et al. A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am. J. Hum. Genet. 57, 1351–1363 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Franceschetti, A. Über tapeto-retinale degenerationen im kindesalter. in Entwicklung und fortschritt in der augenheilkunde. (ed von Sautter, H.) 107–120 (Stuttgart: Ferdinand Enke, 1963).

  6. Fishman, G.A. Fundus flavimaculatus: a clinical classification. Arch. Ophthalmol. 94, 2061–2067 (1976).

    Article  CAS  Google Scholar 

  7. Noble, K.G. & Carr, R.E. Stargardt's disease and fundus flavimaculatus. Arch. Ophthalmol. 97, 1281–1285 (1979).

    Article  CAS  Google Scholar 

  8. Kaplan, J. et al. A gene for Stargardt's disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nature Genet. 5, 308–311 (1993).

    Article  CAS  Google Scholar 

  9. Gerber, S. et al. A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am. J. Hum. Genet. 56, 396–399 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoyng, C.B. et al. Genetic fine mapping of the gene for recessive Stargardt disease. Hum. Genet. 98, 500–504 (1996).

    Article  CAS  Google Scholar 

  11. Zhang, K. et al. A dominant Stargardt's macular dystrophy locus maps to chromosome 13q34. Arch. Ophthalmol. 112, 759–764 (1994).

    Article  CAS  Google Scholar 

  12. Stone, E.M. et al. Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch. Ophthalmol. 112, 765–772 (1994).

    Article  CAS  Google Scholar 

  13. Gass, J.D.M. Stargardt's disease (Fundus Flavimaculatus). in Stereoscopic atlas of macular diseases: diagnosis and treatment (ed. Gass, J.D.M.) 256–261 (St Louis, Missouri: C.V. Mosby, 1987).

    Google Scholar 

  14. Childs, S. & Ling, V. The MDR super-family of genes and its biological implications, in Important advances in oncology (eds V. T. DeVita, S. Hellman, S. & Rosenberg, S.A.) 21–36 (Philadelphia, Pennsylvania: Lippincott Company, 1994).

    Google Scholar 

  15. Dean, M. & Allikmets, R. Evolution of ATP-binding cassette transporter genes. Curr. Opin. Genet. Dev. 5, 779–785 (1995).

    Article  CAS  Google Scholar 

  16. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  17. Mosser, J. et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730 (1993).

    Article  CAS  Google Scholar 

  18. Thomas, P.M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    Article  CAS  Google Scholar 

  19. Shimozawa, N. et al. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science 255, 1132–1134 (1992).

    Article  CAS  Google Scholar 

  20. de la Salle, H. et al. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science 265, 237–241 (1994).

    Article  CAS  Google Scholar 

  21. Hyde, S.C. et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362–365 (1990).

    Article  CAS  Google Scholar 

  22. Michaelis, S. & Berkower, C. Sequence comparison of yeast ATP binding casette (ABC) proteins, in Cold Spring Harbor Symposium on Quantitative Biology, vol. LX: Protein kinesis - the dynamics of protein trafficking and stability. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  23. Allikmets, R. Gerrard, B. Court, D. & Dean, M. Cloning and organization of the abc and mdl genes of Escherichia coli: relationship to eukaryotic multidrug resistance. Gene 136, 231–236 (1993).

    Article  CAS  Google Scholar 

  24. Allikmets, R. et al. Characterization and mapping of three new mammalian ATP-binding transporter genes from an EST database. Mamm. Genome 6, 114–117 (1995).

    CAS  Google Scholar 

  25. Dean, M. et al. Mapping and sequencing of two yeast genes belonging to the ATP-binding cassette superfamily. Yeast 10, 377–383 (1994).

    Article  CAS  Google Scholar 

  26. Luciani, M.-F. Denizot, F. Savary, S. Mattel, M.G. & Chimini, G. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 21, 150–159 (1994).

    Article  CAS  Google Scholar 

  27. Allikmets, R. Gerrard, B. Hutchinson, A. & Dean, M. Characterization of the human ABC superfamily: Isolation and mapping of 21 new genes using the expressed sequence tags database. Hum. Mol. Genet. 5, 1649–1655 (1996).

    Article  CAS  Google Scholar 

  28. Lennon, G. Auffray, C. Polymeropoulos, M. & Scares, M.B. The I. M.A.G.E. consortium: An integrated molecular analysis of genomes and their expression. Genomics 33, 151–152 (1996).

    Article  CAS  Google Scholar 

  29. Klugbauer, N. & Hofmann, F. Primary structure of a novel ABC transporter with a chromosomal localization on the band encoding the multidrug resistance-associated protein. FEBS Lett. 391, 61–65 (1996).

    Article  CAS  Google Scholar 

  30. Anderson, K.L. Towards the isolation of genes recessively inherited ocular disorders. Ph.D. thesis. Baylor College of Medicine (1996).

  31. Luciani, M.-F. & Chimini, G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 15, 226–235 (1996).

    Article  CAS  Google Scholar 

  32. Zinn, K.M. & Marmor, M.F. The retinal pigment epithelium. 521 (Harvard University Press, Cambridge. MA, 1979).

    Google Scholar 

  33. Dowling, J.E. Chemistry of visual adaptation in the rat. Nature 188, 114–118 (1960).

    Article  CAS  Google Scholar 

  34. Anderson, R.E. & Maude, M.B. Lipids of ocular tissues: the effects of essential fatty acid deficiency on the phospholipids of the photoreceptor membranes of rat retina. Arch. Biochem. Biophys. 151, 270–276 (1971).

    Article  Google Scholar 

  35. Rando, R.R. The chemistry of vitamin A and vision. Angew. Chem. Int. Ed. Engl. 29, 461–480 (1990).

    Article  Google Scholar 

  36. Fong, S.-L. Liou, G.I. Landers, R.A. Alvarez, R.A. & CD.Purification and characterization of a retinol-binding glycoprotein synthesized and secreted by bovine neural retina. J. Biol. Chem. 259, 6534–6542 (1984).

    CAS  PubMed  Google Scholar 

  37. Daemen, F.J.M. Vertebrate rod outer segment membranes. Biochem. Biophys. Acta 300. 255–288 (1973).

    CAS  PubMed  Google Scholar 

  38. Hayes, K.C. Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Invest. Ophthalmol. 13, 499–510, (1974).

    CAS  PubMed  Google Scholar 

  39. Hettema, E.H. et al. The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J. 15, 3813–3822 (1996).

    Article  CAS  Google Scholar 

  40. Shani, N. & Valle, D. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters.Proc. Natl. Acad. Sci. USA 93, 11901–11906 (1996).

    Article  CAS  Google Scholar 

  41. Smit, J.J.M. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  Google Scholar 

  42. van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517 (1996).

    Article  CAS  Google Scholar 

  43. Klein, B.A. & Krill, A.E. Flavimaculatus: clinical, functional, and histopathologic observations. Am. J. Ophthalmol. 64, 3–23 (1967).

    Article  Google Scholar 

  44. Eagle, R.C. Jr. Lucier, A.C. Bernadino, V.B. & Yanoff, M. Retinal pigment epithelial abnormalities in Fundus Flavimaculatus: A light and electron microscopic study. Ophthalmology 87, 1189–1200 (1980).

    Article  Google Scholar 

  45. McDonnell, P.J. Kivlin, J.D. Maumenee, I.H. & Green, W.R. Fundus flavimaculatus without maculopathy: a clinicopathologic study. Ophthalmology 93, 116–119 (1986).

    Article  CAS  Google Scholar 

  46. Lopez, P.F. Maumenee, I.H. de la Cruz, Z. & Green, W.R. Autosomal-dominant fundus flavimaculatus: clinicopathologic correlation. Ophthalmology 97, 798–809 (1990).

    Article  CAS  Google Scholar 

  47. Steinmetz, R.L. Garner, A. Maguire, J.I. & Bird, A.C. Histopathology of incipient fundus flavimaculatus. Ophthalmology 98, 953–956 (1991).

    Article  CAS  Google Scholar 

  48. Birnbach, C.D. Järveläinen, M. Possin, D.E. & Milam, A.H. Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 101, 1211–1219 (1994).

    Article  CAS  Google Scholar 

  49. Wing, G.L. Blanchard, G.C. & Weiter, J.J. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).

    CAS  PubMed  Google Scholar 

  50. Weiter, J.J. Delori, F.C. Wing, G.L. & Fitch, K.A. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

    CAS  PubMed  Google Scholar 

  51. Dryja, T.P. & Li, T. Molecular genetics of retinitis pigmentosa. Hum. Mol. Genet. 4, 1739–1743 (1995).

    Article  CAS  Google Scholar 

  52. Meindl, A. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nature Genet. 13, 35–42 (1996).

    Article  CAS  Google Scholar 

  53. Seabra, M.C. Brown, M.S. & Goldstein, J.L. Retinal degeneration in choroideremia: deficiency of Rab geranylgeranyl transferase. Science 259, 377–381 (1993).

    Article  CAS  Google Scholar 

  54. Valle, D. & Simell, O. The hyperornithinemias. in The metabolic and molecular basis of inherited disease (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1147–1185 (McGraw Hill, New York, 1995).

    Google Scholar 

  55. Weber, B.H.F. Vogt, G. Pruett, R.C. Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of met alloproteinase-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nature Genet. 8, 352–355 (1994).

    Article  CAS  Google Scholar 

  56. Meindl, A. et al. Norrie disease is caused by mutations in an extracellular protein resembling the c-terminal globular domain of mucins. Nature Genet. 2, 139–143 (1992).

    Article  CAS  Google Scholar 

  57. Meitinger, T. et al. Molecular modelling of the Norrie disease protein predicts a cystihe knot growth factor tertiary structure. Nature Genet. 5, 376–380 (1993).

    Article  CAS  Google Scholar 

  58. Boguski, M.S. Lowe, T.M. & Tolstoshev, C.M. stoshev, C.M. dbEST-database for ‘expressed sequence tags’. Nature Genet. 4, 332–333 (1993).

    Article  CAS  Google Scholar 

  59. Altschul, S.F. Gish, W. Miller, W. Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  60. Feng, D.-F. & Doolittle, R.F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25, 351–360 (1987).

    Article  CAS  Google Scholar 

  61. Devereaux, J. Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12, 387–395 (1984).

    Article  Google Scholar 

  62. Nathans, J. Thomas, D. & Hogness, D.S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232, 193–202 (1986).

    Article  CAS  Google Scholar 

  63. Lincoln, A.L. Daly, M. & Lander, E. PRIMER: a computer program for automatically selecting PCR primers. Whitehead Institute Technical Report (1991).

  64. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  65. Sambrook, J. Fritsch, E.F. & Maniatis, T. Molecular Cloning. (Cold Spring Harbor Laboratory press, New York, 1989).

    Google Scholar 

  66. Orita, M. Suzuki, Y. Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  67. White, M. Carvalho, M. Derse, D. O'Brien, S.J. & Dean, M. Detecting single base substitutions as heteroduplex polymorphisms. Genomics 12, 301–306 (1992).

    Article  CAS  Google Scholar 

  68. Glavač, D. & Dean, M. Optimization of the single strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mutat. 2, 404–414 (1993).

    Article  Google Scholar 

  69. Roa, B.B. et al. Charcot-Marie-Tooth disease type 1A, association with a spontaneous point mutation in the PMP22 gene. New Engl. J. Med. 329, 96–101 (1993).

    Article  CAS  Google Scholar 

  70. Roa, B.B. et al. Myelin protein zero (MPZ) gene mutations in nonduplication type 1 Charcot- Marie-Tooth disease. Hum. Mut. 7, 36–45 (1996).

    Article  CAS  Google Scholar 

  71. Warner, L.E. et al. Clinical phenotypes of different MPZ(P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 17, 451–460 (1996).

    Article  CAS  Google Scholar 

  72. Rowe, L.B. et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mamm. Genome 5, 253–274 (1994).

    CAS  Google Scholar 

  73. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and culture cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  Google Scholar 

  74. Zhou, H. Yoshioka, T. & Nathans, J. POU-domain factor-1: a complex POU-domain gene implicated in the development of retinal ganglion and amacrine cells. J. Neurosci. 16, 2261–2274 (1996).

    Article  CAS  Google Scholar 

  75. Chiu, M.I. Zack, D.J. Wang, Y. & Nathans, J. Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. Genomics 21, 440–443 (1994).

    Article  CAS  Google Scholar 

  76. Bellanne-Chantelot, C. et al. Mapping the whole human genome by fingerprinting yeast artificial chromosomes. Cell 70, 1059–1068 (1992).

    Article  CAS  Google Scholar 

  77. Kuwano, Y. Nakanishi, O. Nabeshima, Y.-I. Tanaka, T. & Ogata, K. Molecular cloning and nucleotide sequence of DNA complementary to rat ribosomal protein S26 messenger RNA. J. Biochem. (Tokyo) 97, 983–992 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allikmets, R., Singh, N., Sun, H. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy. Nat Genet 15, 236–246 (1997). https://doi.org/10.1038/ng0397-236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0397-236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing