Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer

Abstract

The mechanism by which germline mutations of DNA mismatch repair genes cause susceptibility to tumour formation is not yet understood. Studies in vitro indicate that heterozygosity for these mutations, unlike homozygosity, does not affect mismatch repair. Surprisingly, no loss of heterozygosity at the predisposing loci has so far been described in hereditary nonpolyposis colorectal cancers. Here, we show that loss of heterozygosity (LOH) of markers within or adjacent to the MLH1 gene on chromosome 3p occurs nonrandomly in tumours from members of families in which the disease phenotype cosegregates with MLH1. In every informative case, the loss affects the wild type allele. These results suggest that DNA mismatch repair genes resemble tumour suppressor genes in that two hits are required to cause a phenotypic effect.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  Google Scholar 

  2. Leach, F.S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  Google Scholar 

  3. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  Google Scholar 

  4. Bronner, C.A. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368, 258–261 (1994).

    Article  CAS  Google Scholar 

  5. Nicolaides, N et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371, 75–80 (1994).

    Article  CAS  Google Scholar 

  6. Lynch, H.T. et al. Genetics, natural history, tumour spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104, 1535–1549 (1993).

    Article  CAS  Google Scholar 

  7. Peltomäki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260, 810–812 (1993).

    Article  Google Scholar 

  8. Aaltonen, L.A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  Google Scholar 

  9. Lindblom, A., Tannergård, P., Werelius, B. & Nordenskjöld, M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colorectal cancer. Nature Genet. 5, 279–282 (1993).

    Article  CAS  Google Scholar 

  10. Parsons, R. et al. Hypemnutability and mismatch repair deficiency in RER+ tumour cells. Cell 75, 1227–1236 (1993).

    Article  CAS  Google Scholar 

  11. Ionov, Y., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  Google Scholar 

  12. Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  Google Scholar 

  13. Risinger, J.I. et al. Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53, 5100–5103 (1993).

    CAS  Google Scholar 

  14. Aaltonen, L.A. et al. Replication errors in benign and malignant tumours from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54, 1645–1648 (1994).

    CAS  Google Scholar 

  15. Liu, B. et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer. Cancer Res. 54, 4590–4594 (1994).

    CAS  Google Scholar 

  16. Nyström-Lahti, M. et al. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer. Am. J. hum. Genet. 55, 659–665 (1994).

    PubMed  PubMed Central  Google Scholar 

  17. Nyström-Lahti, M. et al. Close linkage to chromosome 3p and conservation of ancestral founding haplotype in hereditary nonpolyposis colorectal cancer families. Proc. natn. Acad. Sci. U.S.A. 91, 6054–6058 (1994).

    Article  Google Scholar 

  18. Mecklin, J-P, Järvinen, H.J. & Peltokallio, P. Cancer family syndrome. Genetic analysis of 22 Finnish kindreds. Gastroenterology 90, 328–333 (1986).

    Article  CAS  Google Scholar 

  19. Mecklin, J-P. Frequency of hereditary colorectal carcinoma. Gastroenterology 93, 1021–1025 (1987).

    Article  CAS  Google Scholar 

  20. Peltomäki, P. et al. Evidence supporting exclusion of the DCC gene and a portion of chromosome 18q as the locus for susceptibility to hereditary nonpolyposis colorectal carcinoma in five kindreds. Cancer Res. 51, 4135–4140 (1991).

    PubMed  Google Scholar 

  21. Peltomäki, P. et al. Evidence that the MCC-APC gene region in 5q21 is not the site for susceptibility to hereditary nonpolyposis colorectal carcinoma. Cancer Res. 52, 4530–4533 (1992).

    PubMed  Google Scholar 

  22. Ganly, P.S., Jarad, N., Rudd, R.M. & Rabbits, P.H. PCR-based RFLP analysis allows genotyping of the short arm of chromosome 3 in small biopsies from patients with lung cancer. Genomics 12, 221–228 (1992).

    Article  CAS  Google Scholar 

  23. Knudson, A.G. All in the (cancer) family. Nature Genet. 5, 103–104 (1993).

    Article  CAS  Google Scholar 

  24. Bodmer, W., Bishop, T. & Karran, P. Genetic steps in colorectal cancer. Nature Genet. 6, 217–219 (1994).

    Article  CAS  Google Scholar 

  25. Jiricny, J. Colon cancer and DNA repair: have mismatches met their match?Trends Genet. 10, 164–168 (1994).

  26. Kouri, M. Diploid predominance in hereditary nonpolyposis colorectal carcinoma evaluated by flow cytometry. Cancer 65, 1825–1829 (1990).

    Article  CAS  Google Scholar 

  27. Lothe, R.A. et al. Genomic instability in colorectal cancer; relationship to clinicopathological variables and family history. Cancer Res. 53, 5849–5852 (1993).

    CAS  Google Scholar 

  28. Wu, C. et al. DNA alterations in cells from hereditary non-polyposis colorectal cancer patients. Oncogene 9, 991–994 (1994).

    CAS  PubMed  Google Scholar 

  29. Knudson, A.G. Mutation and cancer: statistical study on retinoblastoma. Proc. natn. Acad. Sci. U.S.A. 68, 820–823 (1971).

    Article  Google Scholar 

  30. Gyapay, G. et al. The 1993-1994 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  31. Vogelstein, B. et al. Genetic alterations during colorectal tumour development. New Engl. J. Med. 319, 525–532 1988).

    Article  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning, a laboratory manual. (Cold Spring Harbor Laboratory Press/New York, 1989).

  33. Isola, J., DeVries, S., Chu, L, Ghazvini, S. & Waldman, F. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumour samples. Am. J. Pathol. (in the press).

  34. Weissenbach, J. et al. Second generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  35. Jones, M.H., Yamakawa, K. & Nakamura, Y. Isolation and characterization of 19 dinucleotide repeat polymorphisms on chromosome 3p. Hum. molec. Genet. 1, 131–133 (1992).

    Article  CAS  Google Scholar 

  36. Spirio, L., Joslyn, G., Nelson, L., Leppert, M. & White, R. A CA repeat 30-70 kb downstream from the adenomatous polyposis gene. Nucl. Acids Res. 19, 6348 (1991).

    Article  CAS  Google Scholar 

  37. Jones, M.H. & Nakamura, Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chrom.Cancer 5, 89–90 (1992).

    Article  CAS  Google Scholar 

  38. Risinger, J.I. & Boyd, J. Dinucleotide repeat polymorphism in the human DCC gene at chromosome 18q21. Hum. molec. genet. 1, 657 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemminki, A., Peltomäki, P., Mecklin, JP. et al. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 8, 405–410 (1994). https://doi.org/10.1038/ng1294-405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1294-405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing