Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses

Abstract

Lsc (the murine homolog of human p115 Rho GEF) is a member of the Dbl-homology family of GTP exchange factors and is a specific activator of Rho. Lsc is activated by the Gα13 subunit of heterotrimeric G proteins and contains a regulator of G protein signaling domain that downmodulates Gα12 and Gα13. Lsc is expressed primarily in the hematopoietic system and links the activation of Gα12 and Gα13–coupled receptors to actin polymerization in B and T cells. Lsc is essential for marginal zone B (MZB) cell homeostasis and for the generation of immune responses. Although Lsc-deficient lymphocytes show reduced basal motility, MZB cells show enhanced migration after serum activation. Thus, Lsc is a critical regulator of MZB cells and immune functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lsc expression is specific to the hematopoietic system.
Figure 2: Requirement for Lsc in responses to agonists implicated in activation of Gα12 and Gα13.
Figure 3: Analysis of B cell populations in Lsc−/− mice.
Figure 4: MZB cell defect in Lsc−/− mice is cell autonomous.
Figure 5: Defective humoral responses in Lsc−/− mice.
Figure 6: Lymphocyte proliferation in the absence of Lsc.
Figure 7: Altered migration of Lsc−/− lymphocytes.

Similar content being viewed by others

References

  1. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fischer, K. D., Tedford, K. & Penninger, J. M. Vav links antigen-receptor signaling to the actin cytoskeleton. Semin. Immunol. 10, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T- cell receptor. Curr. Biol. 8, 554–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Aasheim, H. C., Pedeutour, F. & Smeland, E. B. Characterization, expression and chromosomal localization of a human gene homologous to the mouse Lsc oncogene, with strongest expression in hematopoetic tissues. Oncogene 14, 1747–1752 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Glaven, J. A., Whitehead, I. P., Nomanbhoy, T., Kay, R. & Cerione, R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J. Biol. Chem. 271, 27374–27381 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Hart, M. J. et al. Identification of a novel guanine nucleotide exchange factor for the Rho GTPase.J. Biol. Chem. 271, 25452–25458 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Whitehead, I. P. et al. Expression cloning of lsc, a novel oncogene with structural similarities to the Dbl family of guanine nucleotide exchange factors. J. Biol. Chem. 271, 18643–18650 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kozasa, T. et al. p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13 . Science 280, 2109–2111 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gohla, A., Harhammer, R. & Schultz, G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J. Biol. Chem. 273, 4653–4659 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Moolenaar, W. H. Development of our current understanding of bioactive lysophospholipids. Ann. NY Acad. Sci. 905, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Pyne, S. & Pyne, N. J. Sphingosine 1-phosphate signalling in mammalian cells. Biochem. J. 349, 385–402 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Majumdar, M., Seasholtz, T. M., Buckmaster, C., Toksoz, D. & Brown, J. H. A rho exchange factor mediates thrombin and Gα(12)-induced cytoskeletal responses. J. Biol. Chem. 274, 26815–26821 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Djellas, Y., Manganello, J. M., Antonakis, K. & Le Breton, G. C. Identification of Gα13 as one of the G-proteins that couple to human platelet thromboxane A2 receptors. J. Biol. Chem. 274, 14325–14330 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kabarowski, J. H. et al. Direct genetic demonstration of Gα13 coupling to the orphan G protein-coupled receptor G2A leading to RhoA-dependent actin rearrangement. Proc. Natl Acad. Sci. USA 97, 12109–12114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hart, M. J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13 . Science 280, 2112–2114 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Fromm, C., Coso, O. A., Montaner, S., Xu, N. & Gutkind, J. S. The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proc. Natl Acad. Sci. USA 94, 10098–100103 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Mao, J., Yuan, H., Xie, W. & Wu, D. Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein α subunit Gα13 . Proc. Natl Acad. Sci. USA 95, 12973–12976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahai, E., Alberts, A. S. & Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17, 1350–1361 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sotiropoulos, A., Gineitis, D., Copeland, J. & Treisman, R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98, 159–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Shi, C. S., Sinnarajah, S., Cho, H., Kozasa, T. & Kehrl, J. H. G13α-mediated PYK2 activation. PYK2 is a mediator of G13α-induced serum response element-dependent transcription. J. Biol. Chem. 275, 24470–24476 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  24. Montaner, S., Perona, R., Saniger, L. & Lacal, J. C. Activation of serum response factor by RhoA is mediated by the nuclear factor-κB and C/EBP transcription factors. J. Biol. Chem. 274, 8506–8515 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Cariappa, A., Liou, H. C., Horwitz, B. H. & Pillai, S. Nuclear factor κB is required for the development of marginal zone B lymphocytes. J. Exp. Med. 192, 1175–1182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pillai, S. The chosen few? Positive selection and the generation of naive B lymphocytes. Immunity 10, 493–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Martin, F. & Kearney, J. F. CD21high IgMhigh splenic B cells enriched in the marginal zone: distinct phenotypes and functions. Curr. Top. Microbiol. Immunol. 246, 45–50 (1999).

    CAS  PubMed  Google Scholar 

  28. Klages, B., Brandt, U., Simon, M. I., Schultz, G. & Offermanns, S. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell. Biol. 144, 745–754 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lane, P. J., Gray, D., Oldfield, S. & MacLennan, I. C. Differences in the recruitment of virgin B cells into antibody responses to thymus-dependent and thymus-independent type-2 antigens. Eur. J. Immunol. 16, 1569–1575 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 27, 2366–2374 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Sah, V. P., Seasholtz, T. M., Sagi, S. A. & Brown, J. H. The role of Rho in G protein-coupled receptor signal transduction. Annu. Rev. Pharmacol. Toxicol. 40, 459–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Goetzl, E. J. & An, S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Goetzl, E. J., Kong, Y. & Mei, B. Lysophosphatidic acid and sphingosine 1-phosphate protection of T cells from apoptosis in association with suppression of Bax. J. Immunol. 162, 2049–2056 (1999).

    CAS  PubMed  Google Scholar 

  34. Goetzl, E. J., Kong, Y. & Voice, J. K. Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J. Immunol. 164, 4996–4999 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Stam, J. C., Michiels, F., van der Kammen, R. A., Moolenaar, W. H. & Collard, J.G. Invasion of T-lymphoma cells: cooperation between Rho family GTPases and lysophospholipid receptor signaling. EMBO J. 17, 4066–4074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weng, Z. et al. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc. Natl Acad. Sci. USA 95, 12334–12339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Le, L. Q. et al. Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity 14, 561–571 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kraal, G. Cells in the marginal zone of the spleen. Int. Rev. Cytol. 132, 31–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol. Rev. 175, 70–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol. 162, 7198–7207 (1999).

    CAS  PubMed  Google Scholar 

  42. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nature Immunol. 2, 548–555 (2001).

    Article  CAS  Google Scholar 

  43. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A. & Springer, T. A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Wirth and L. Nitschke for critical reading of the manuscript; M. Zimmer for assistance with the mapping of Lsc genomic sequences; and M. Eigenthaler and U. Walter for advice on platelet analysis. Supported by Marie Curie (K. M.) and grants from SFB 465, DFG (Fi2-2) and the state of Baden-Württemberg (K.-D. F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Fischer.

Supplementary information

Web Figure 1.

Disruption of the gene that encodes Lsc. (a) Integration of the Lsc targeting vector in the genomic locus. Exons are represented by black boxes. The neo cassette was cloned in reverse orientation into two exons of the DH domain, replacing a PvuI-XbaI segment. Locations of primers used for PCR are indicated with triangles. Probes A and B were used for Southern blot detection of long and short arms, respectively. B, BamHI; H, HindIII; S, SacI; E, EcoRI; P, PvuI; Xh, XhoI. (b) Southern blot analysis. Genomic DNA from Lsc+/+, Lsc-/- and Lsc+/- mice was digested with BamHI and hybridized with probes A and B. (c) PCR analysis of tail DNA from Lsc+/+, Lsc+/- and Lsc-/- mice. (d) Immunoblot analysis of total spleen cell lysates. Lsc expression was detected with anti-Lsc. (e) Intracellular stain of Lsc in CD4+ lymph node cells from Lsc+/+, Lsc+/- and Lsc-/- mice. Isotype control is shown as a dotted line. (GIF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girkontaite, I., Missy, K., Sakk, V. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol 2, 855–862 (2001). https://doi.org/10.1038/ni0901-855

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing