Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein kinase C and beyond

Abstract

Protein kinase C molecules regulate both positive and negative signal transduction pathways essential for the initiation and homeostasis of immune responses. There are multiple isoforms of protein kinase C that are activated differently by calcium and diacylglycerol, and these are activated mainly by antigen receptors in T cells, B cells and mast cells. Additionally, mammals express several other diacylglycerol binding proteins that are linked to a network of key signal transduction pathways that control lymphocyte biology. Diacylglycerol and protein kinase C regulate a broad range of gene transcription programs but also modulate integrins, chemokine responses and antigen receptors, thereby regulating lymphocyte adhesion, migration, differentiation and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification and structural characteristics of PKC isoforms.
Figure 2: The network of DAG-binding proteins.
Figure 3: Activation of classical and novel PKC isoforms.

Similar content being viewed by others

References

  1. Mellor, H. & Parker, P.J. The extended protein kinase C superfamily. Biochem. J. 332, 281–292 (1998).

    Article  CAS  Google Scholar 

  2. Nishizuka, Y. Discovery and prospect of protein kinase C research: epilogue. J. Biochem. (Tokyo) 133, 155–158 (2003).

    Article  CAS  Google Scholar 

  3. Weiss, A., Irving, B.A., Tan, L.K. & Koretzky, G.A. Signal transduction by the T cell antigen receptor. Semin. Immunol. 3, 313–324 (1991).

    CAS  PubMed  Google Scholar 

  4. Genot, E.M., Parker, P.J. & Cantrell, D.A. Analysis of the role of protein kinase C-α, -ε, and -ζ in T cell activation. J. Biol. Chem. 270, 9833–9839 (1995).

    Article  CAS  Google Scholar 

  5. Hogg, N., Laschinger, M., Giles, K. & McDowall, A. T-cell integrins: more than just sticking points. J. Cell. Sci. 116, 4695–4705 (2003).

    Article  CAS  Google Scholar 

  6. Ivaska, J. et al. Integrin-protein kinase C relationships. Biochem. Soc. Trans. 31, 90–93 (2003).

    Article  CAS  Google Scholar 

  7. Weiss, A., Wiskocil, R.L. & Stobo, J.D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL-2 production reflects events occurring at a pre-translational level. J. Immunol. 133, 123–128 (1984).

    CAS  PubMed  Google Scholar 

  8. Isakov, N., Mally, M.I., Scholz, W. & Altman, A. T-lymphocyte activation: the role of protein kinase C and the bifurcating inositol phospholipid signal transduction pathway. Immunol. Rev. 95, 89–111 (1987).

    Article  CAS  Google Scholar 

  9. Xing, T., Higgins, V.J. & Blumwald, E. Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant. Cell 8, 555–564 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  Google Scholar 

  11. Pettitt, T.R. et al. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J. Biol. Chem. 272, 17354–17359 (1997).

    Article  CAS  Google Scholar 

  12. Sanjuan, M.A. et al. T cell activation in vivo targets diacylglycerol kinase α to the membrane: a novel mechanism for Ras attenuation. J. Immunol. 170, 2877–2883 (2003).

    Article  CAS  Google Scholar 

  13. Zhong, X.P. et al. Enhanced T cell responses due to diacylglycerol kinase ζ deficiency. Nat. Immunol. 4, 882–890 (2003).

    Article  CAS  Google Scholar 

  14. Tan, S.L. & Parker, P.J. Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem. J. 376, 545–552 (2003).

    Article  CAS  Google Scholar 

  15. Geiger, M. et al. Defining the human targets of phorbol ester and diacylglycerol. Curr. Opin. Mol. Ther. 5, 631–641 (2003).

    CAS  PubMed  Google Scholar 

  16. Kazanietz, M.G. Novel “nonkinase” phorbol ester receptors: the C1 domain connection. Mol. Pharmacol. 61, 759–767 (2002).

    Article  CAS  Google Scholar 

  17. Ebinu, J.O. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  Google Scholar 

  18. Rykx, A. et al. Protein kinase D: a family affair. FEBS Lett. 546, 81–86 (2003).

    Article  CAS  Google Scholar 

  19. Tan, I., Seow, K.T., Lim, L. & Leung, T. Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42-binding kinase α. Mol. Cell. Biol. 21, 2767–2778 (2001).

    Article  CAS  Google Scholar 

  20. Waldron, R.T. & Rozengurt, E. Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. J. Biol. Chem. 278, 154–163 (2003).

    Article  CAS  Google Scholar 

  21. Izquierdo, M., Downward, J., Graves, J.D. & Cantrell, D.A. Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. Mol. Cell. Biol. 12, 3305–3312 (1992).

    Article  CAS  Google Scholar 

  22. Teixeira, C., Stang, S.L., Zheng, Y., Beswick, N.S. & Stone, J.C. Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood 102, 1414–1420 (2003).

    Article  CAS  Google Scholar 

  23. Luo, B., Prescott, S.M. & Topham, M.K. Protein kinase C α phosphorylates and negatively regulates diacylglycerol kinase ζ. J. Biol. Chem. 278, 39542–39547 (2003).

    Article  CAS  Google Scholar 

  24. Luo, B., Prescott, S.M. & Topham, M.K. Association of diacylglycerol kinase ζ with protein kinase C α: spatial regulation of diacylglycerol signaling. J. Cell Biol. 160, 929–937 (2003).

    Article  CAS  Google Scholar 

  25. Newton, A.C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    Article  CAS  Google Scholar 

  26. Newton, A.C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270, 28495–28498 (1995).

    Article  CAS  Google Scholar 

  27. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  28. Arendt, C.W., Albrecht, B., Soos, T.J. & Littman, D.R. Protein kinase C-θ: signaling from the center of the T-cell synapse. Curr. Opin. Immunol. 14, 323–330 (2002).

    Article  CAS  Google Scholar 

  29. Diaz-Flores, E., Siliceo, M., Martinez, A.C. & Merida, I. Membrane translocation of protein kinase Cθ during T lymphocyte activation requires phospholipase C-γ-generated diacylglycerol. J. Biol. Chem. 278, 29208–29215 (2003).

    Article  CAS  Google Scholar 

  30. Altman, A. & Villalba, M. Protein kinase C-θ (PKC-θ): it's all about location, location, location. Immunol. Rev. 192, 53–63 (2003).

    Article  CAS  Google Scholar 

  31. Baier, G. The PKC gene module: molecular biosystematics to resolve its T cell functions. Immunol. Rev. 192, 64–79 (2003).

    Article  CAS  Google Scholar 

  32. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).

    Article  CAS  Google Scholar 

  33. Koretzky, G.A. & Myung, P.S. Positive and negative regulation of T-cell activation by adaptor proteins. Nat. Rev. Immunol. 1, 95–107 (2001).

    Article  CAS  Google Scholar 

  34. Ward, S.G. & Cantrell, D.A. Phosphoinositide 3-kinases in T lymphocyte activation. Curr. Opin. Immunol. 13, 332–338 (2001).

    Article  CAS  Google Scholar 

  35. Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Collins, B.J., Deak, M., Arthur, J.S., Armit, L.J. & Alessi, D.R. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 22, 4202–4211 (2003).

    Article  CAS  Google Scholar 

  37. Birchall, A.M. et al. Ro 32-0432, a selective and orally active inhibitor of protein kinase C prevents T-cell activation. J. Pharmacol. Exp. Ther. 268, 922–929 (1994).

    CAS  PubMed  Google Scholar 

  38. Bit, R.A. et al. Inhibitors of protein kinase C. 3. Potent and highly selective bisindolylmaleimides by conformational restriction. J. Med. Chem. 36, 21–29 (1993).

    Article  CAS  Google Scholar 

  39. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  Google Scholar 

  40. Morgan, M.M. et al. Superantigen-induced T cell:B cell conjugation is mediated by LFA-1 and requires signaling through Lck, but not ZAP-70. J. Immunol. 167, 5708–5718 (2001).

    Article  CAS  Google Scholar 

  41. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269–1281 (2002).

    Article  CAS  Google Scholar 

  42. McLeod, S.J. & Gold, M.R. Activation and function of the Rap1 GTPase in B lymphocytes. Int. Rev. Immunol. 20, 763–789 (2001).

    Article  CAS  Google Scholar 

  43. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signalling: adhering to new models. Nat. Rev. Mol. Cell. Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  44. Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D.A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat. Immunol. 3, 251–258 (2002).

    Article  CAS  Google Scholar 

  45. Liu, L. et al. The GTPase Rap1 regulates phorbol 12-myristate 13-acetate-stimulated but not ligand-induced β1 integrin-dependent leukocyte adhesion. J. Biol. Chem. 277, 40893–40900 (2002).

    Article  CAS  Google Scholar 

  46. Sotsios, Y., Blair, P.J., Westwick, J. & Ward, S.G. Disparate effects of phorbol esters, CD3 and the costimulatory receptors CD2 and CD28 on RANTES secretion by human T lymphocytes. Immunology 101, 30–37 (2000).

    Article  CAS  Google Scholar 

  47. Guinamard, R. et al. B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1α chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J. Exp. Med. 189, 1461–1466 (1999).

    Article  CAS  Google Scholar 

  48. Dustin, M.L. Regulation of T cell migration through formation of immunological synapses: the stop signal hypothesis. Adv. Exp. Med. Biol. 512, 191–201 (2002).

    Article  CAS  Google Scholar 

  49. Mecklenbrauker, I., Saijo, K., Zheng, N.Y., Leitges, M. & Tarakhovsky, A. Protein kinase Cδ controls self-antigen-induced B-cell tolerance. Nature 416, 860–865 (2002).

    Article  Google Scholar 

  50. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    Article  CAS  Google Scholar 

  51. Leitges, M. et al. Protein kinase C-delta is a negative regulator of antigen-induced mast cell degranulation. Mol. Cell. Biol. 22, 3970–3980 (2002).

    Article  CAS  Google Scholar 

  52. Cantrell, D.A., Davies, A.A. & Crumpton, M.J. Activators of protein kinase C down-regulate and phosphorylate the T3/T-cell antigen receptor complex of human T lymphocytes. Proc. Natl. Acad. Sci. USA 82, 8158–8162 (1985).

    Article  CAS  Google Scholar 

  53. Minami, Y., Samelson, L.E. & Klausner, R.D. Internalization and cycling of the T cell antigen receptor. Role of protein kinase C. J. Biol. Chem. 262, 13342–13347 (1987).

    CAS  PubMed  Google Scholar 

  54. Bonefeld, C.M. et al. TCR comodulation of nonengaged TCR takes place by a protein kinase C and CD3 γ di-leucine-based motif-dependent mechanism. J. Immunol. 171, 3003–3009 (2003).

    Article  CAS  Google Scholar 

  55. Williams, D.H., Woodrow, M., Cantrell, D.A. & Murray, E.J. Protein kinase C is not a downstream effector of p21ras in activated T cells. Eur. J. Immunol. 25, 42–47 (1995).

    Article  CAS  Google Scholar 

  56. Leitges, M. et al. Immunodeficiency in protein kinase Cβ-deficient mice. Science 273, 788–791 (1996).

    Article  CAS  Google Scholar 

  57. Saijo, K. et al. Protein kinase C β controls nuclear factor κB activation in B cells through selective regulation of the IκB kinase α. J. Exp. Med. 195, 1647–1652 (2002).

    Article  CAS  Google Scholar 

  58. Martin, P. et al. Role of ζ PKC in B-cell signaling and function. EMBO J. 21, 4049–4057 (2002).

    Article  CAS  Google Scholar 

  59. Saijo, K. et al. Essential role of Src-family protein tyrosine kinases in NF-κB activation during B cell development. Nat. Immunol. 4, 274–279 (2003).

    Article  CAS  Google Scholar 

  60. Baier, G. et al. Molecular cloning and characterization of PKCθ, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J. Biol. Chem. 268, 4997–5004 (1993).

    CAS  PubMed  Google Scholar 

  61. Pfeifhofer, C. et al. Protein kinase C θ affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J. Exp. Med. 197, 1525–1535 (2003).

    Article  CAS  Google Scholar 

  62. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    Article  CAS  Google Scholar 

  63. Berg-Brown, N.N. et al. PKC-θ signals activation versus tolerance in vivo. J. Exp. Med. 199, 743–752 (2004).

    Article  CAS  Google Scholar 

  64. Cheng, A.M. et al. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl. Acad. Sci. USA 94, 9797–9801 (1997).

    Article  CAS  Google Scholar 

  65. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  Google Scholar 

  66. Clements, J.L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  CAS  Google Scholar 

  67. Gomez, M., Tybulewicz, V. & Cantrell, D.A. Control of pre-T cell proliferation and differentiation by the GTPase Rac-I. Nat. Immunol. 1, 348–352 (2000).

    Article  CAS  Google Scholar 

  68. Voll, R.E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  Google Scholar 

  69. Hinton, H., Alessi, D.R. & Cantrell, D. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat. Immunol. 5, 539–545 (2004).

    Article  CAS  Google Scholar 

  70. Matthews, S., Iglesias, T., Cantrell, D. & Rozengurt, E. Dynamic re-distribution of protein kinase D (PKD) as revealed by a GFP-PKD fusion protein: dissociation from PKD activation. FEBS Lett. 457, 515–521 (1999).

    Article  CAS  Google Scholar 

  71. Matthews, S.A., Rozengurt, E. & Cantrell, D. Protein kinase D. A selective target for antigen receptors and a downstream target for protein kinase C in lymphocytes. J. Exp. Med. 191, 2075–2082 (2000).

    Article  CAS  Google Scholar 

  72. Matthews, S.A., Iglesias, T., Rozengurt, E. & Cantrell, D. Spatial and temporal regulation of protein kinase D (PKD). EMBO J. 19, 2935–2945 (2000).

    Article  CAS  Google Scholar 

  73. Marklund, U., Lightfoot, K. & Cantrell, D. Intracellular location and cell context-dependent function of protein kinase D. Immunity 19, 491–501 (2003).

    Article  CAS  Google Scholar 

  74. Michie, A. & Zuniga-Pflucker, J. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311 (2002).

    Article  CAS  Google Scholar 

  75. Michie, A.M., Soh, J.W., Hawley, R.G., Weinstein, I.B. & Zuniga-Pflucker, J.C. Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc. Natl. Acad. Sci. USA 98, 609–614 (2001).

    Article  CAS  Google Scholar 

  76. Li, Y. et al. SPAK kinase is a substrate and target of PKCθ in T-cell receptor-induced AP-1 activation pathway. EMBO J. (2004).

  77. Astoul, E. et al. Approaches to define antigen receptor-induced serine kinase signal transduction pathways. J. Biol. Chem. 278, 9267–9275 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Altman, G. Baier and D. Littman and current and past members of the Lymphocyte Activation Laboratory for discussions. Supported by European Union Marie Curie (MCFI-2001-01855 to M.S.) and Wellcome Trust (D.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen A Cantrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitaler, M., Cantrell, D. Protein kinase C and beyond. Nat Immunol 5, 785–790 (2004). https://doi.org/10.1038/ni1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing