Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis in cancer, vascular, rheumatoid and other disease

Abstract

Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Demicheli, R. et al. Local recurrences following mastectomy: support for the concept of tumor dormancy.J, natn. Cancer Inst. 86, 45–48 (1994).

    Article  CAS  Google Scholar 

  2. Morrow, M. & Jordan, V.C. Risk factors and the prevention of breast cancer with tamoxifen. Cancer Surveys 18, 211–229 (1993).

    CAS  PubMed  Google Scholar 

  3. Kripke, M.L. Immunoregulation of carcinogenesis: past, present, and future. J. natn. Cancer Inst. 80, 722–727 (1988).

    Article  CAS  Google Scholar 

  4. Sugarbaker, E.V. Cancer metastasis: a product of tumor-host interactions. Curr. Prob. Cancer 3, 1–59 (1979).

    Article  CAS  Google Scholar 

  5. Fider, I.J. & Ellis, L.M. Cell 79, 185–188 (1994).

    Article  Google Scholar 

  6. Prehn, R.T. The inhibition of tumor growth by tumor mass. Cancer Res. 51, 2–4 (1991).

    CAS  PubMed  Google Scholar 

  7. Folkman, J., Watson, K. Ingber & D. Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  Google Scholar 

  8. Kandel, J. et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66, 1095–1104 (1991).

    Article  CAS  Google Scholar 

  9. Weidner, N., Semple, J., Welch, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    Article  CAS  Google Scholar 

  10. Folkman, J. Tumor angiogenesis. In: Mendelsohn, J., Howley, P., Liotta, L., Israel, M., eds. The Molecular Basis of Cancer, W.B. Saunders Company, Philadelphia, in press (1994).

    Google Scholar 

  11. Folkman, J. Angiogenesis and breast cancer. J. clin. Oncol 12, 441–443 (1994).

    Article  CAS  Google Scholar 

  12. Nicosia, R.F., Tchao, R. & Leighton, J. Interactions between newly formed en-dothelial channels and carcinoma cells in plasma clot culture. Clin. exp. Metastasis. 4, 91–104 (1986).

    Article  CAS  Google Scholar 

  13. Rak, J.W., Hegmann, E.J., Lu, C. & Kerbel, R.S. Progressive loss of sensitivity to en-dothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J. cell. Physiol. 159, 245–255 (1994).

    Article  CAS  Google Scholar 

  14. Hamada, J., Cavanaugh, P.G., Lotan, O. & Nicolson, G. Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothe-lial cells derived from target organs for metastasis. Br. J. Cancer 66, 349–354 (1992).

    Article  CAS  Google Scholar 

  15. Rastinejad, F., Polveini, P.J. & Bouck, N.P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355 (1989).

    Article  CAS  Google Scholar 

  16. Bouck, N.P. Tumor angiogenesis: the role of oncogenes and tumor suppressor gene. Cancer Cells. 2, 179–185 (1990).

    CAS  PubMed  Google Scholar 

  17. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N.P. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  Google Scholar 

  18. Maciag, T., Mehlman, T., Friesel, R. & Schreiber, A. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225, 932–935 (1984).

    Article  CAS  Google Scholar 

  19. Shing, Y. et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1298 (1984).

    Article  CAS  Google Scholar 

  20. Ferrara, N. & Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Com-mun. 161, 851–855 (1989).

    CAS  Google Scholar 

  21. Fett, J.W. et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochem. 24, 5480–5486 (1985).

    Article  CAS  Google Scholar 

  22. Folkman, J., Shing, Y., J. biol Chem. 267, 10931–10934 (1992).

    CAS  PubMed  Google Scholar 

  23. O'Reilly, S. et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  Google Scholar 

  24. Van Meir, E.G. et al. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genetics 8, 171–176 (1994).

    Article  CAS  Google Scholar 

  25. Poste, G. & Fidler, I.J. The pathogenesis of cancer metastasis. Nature 283, 139–146 (1980).

    Article  CAS  Google Scholar 

  26. Zetter, B. The cellular basis of site-specific tumor metastasis. N. Engl. J. Med. 322, 605–612 (1990).

    Article  CAS  Google Scholar 

  27. Holmgren, L., O'Reilly, M. & Folkman, J. in press (1994).

  28. Takeshita, S. et al. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. clin. Invest 93, 662–670 (1994).

    Article  CAS  Google Scholar 

  29. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  30. Ferrara, N. personal communication (1994).

  31. Yuhas, J.M. & Pazmino, N.H. Inhibition of subcutaneously growing line 1 carcinomas due to metastatic spread. Cancer Res. 34, 2005–2010 (1974).

    CAS  PubMed  Google Scholar 

  32. Nanus, D. et al. Expression of basic fibroblast growth factor in primary human renal tumors: correlation with poor survival. J. natn. Cancer Inst. 85, 1597–1599 (1993).

    Article  CAS  Google Scholar 

  33. Nguyen, M. et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. natn. Cancer Inst. 86, 356–361 (1994).

    Article  CAS  Google Scholar 

  34. Kohn, E. et al. Phase I trial of signal transduction inhibitor, CAI. Proc. Amer. Assoc. Cancer Res. 35,244(1994).

  35. Liotta, L.A. personal communication (1994).

  36. Folkman, J. Clinical applications of angiogenesis research. New Engl. J. Med. in press (1994).

  37. Watanabe, H., Nguyen, M., Schizer, M., Li, V., Hayes, D.R., Sallan, S., Folkman, J. Basic fibroblast growth factor in human serum – a prognostic test for breast cancer. Molec. Biol. Cell 3, 324a (1992).

    Google Scholar 

  38. Li, V.W. et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumors. The Lancet 344, 82–86 (1994).

    Article  CAS  Google Scholar 

  39. Weidner, N. et al. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. natn. Cancer Inst. 84, 1875–1887 (1992).

    Article  CAS  Google Scholar 

  40. Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Amer. J. Pathol. 143, 401–409 (1993).

    CAS  Google Scholar 

  41. Teicher, B.A. et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer. 57, 920–925 (1994).

    Article  CAS  Google Scholar 

  42. Schaper, W., Schaper, J. Collateral Circulation: Heart, Brain, Kidney, Limbs. Kluwer Academic Publishers, Boston, (1993).

    Book  Google Scholar 

  43. Miller, J.W. et al. Vascular endothelial growth factorJVascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Amer. J. Pathol 145, 574–584 (1994).

    CAS  Google Scholar 

  44. Adamis, A.P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Amer. J. Ophthal. 118, 445–450(1994).

    Article  CAS  Google Scholar 

  45. Takahashi, K. et al. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J. clin. Invest. 93, 2357–2364 (1994).

    Article  CAS  Google Scholar 

  46. Peacock, D.J., Banquerigo, M.L. & Brahn, E. Angiogenesis inhibition suppresses collagen arthritis. J. exp. Med. 175, 1135–1138 (1992).

    Article  CAS  Google Scholar 

  47. Nickoloff, B.J., Mitra, R.S., Varani, J., Dixit, V.M. & Polerini, P.J. Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Amer. J. Pathol 44, 820–828 (1994).

    Google Scholar 

  48. Bacharach-Buhles, M., Panz, B., Elgammal, S., Auer, T. & Altmeyer, P. The elongation of psoriatic capillaries, the result of epidermal hyperplasia, not of angiogenesis. J. Invest. Dermatol. 103, 263 (1994).

    Google Scholar 

  49. Szabo, S. Animal model: cysteamine-induced and chronic duodenal ulcer in the rat. Amer. J. Pathol 93, 273–276 (1974).

    Google Scholar 

  50. Szabo, S. et al. Orally administered FGF mutein: Effect on healing of chronic duodenal ulcers in rats. Digestive Disease and Sciences 34, 1323 (1989).

    Google Scholar 

  51. Folkman, J. et al. Duodenal ulcer: discovery of a new mechanism and development of angiogenic therapy which accelerates healing. Ann. Surg. 214, 414–427 (1991).

    Article  CAS  Google Scholar 

  52. Hull, M.A., Cullen, D.J.E. & Hawkey, C.J. Basic fibroblast growth factor in gastric ulceration: mucosal levels and therapeutic potential. Gastroenterology 106, A97 (1994).

  53. Dvorak, H., Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. EnglJ. Med. 315, 1650–1659 (1986).

    Article  CAS  Google Scholar 

  54. Wolfe, M.M. et al. Safety and efficacy of an angiogenic peptide, basic fibroblast growth factor (bFGF) in the treatment of gastroduodenal ulcers: A preliminary report. Gastroenterology 106, A212 (1994).

    Google Scholar 

  55. Folkman, J. Angiogenesis in female reproductive organs. In: Steroid Hormones and Uterine Bleeding. Alexander, N.J., d'Arcangues, C., eds. American Association for the Advancement of Science Press, Washington DC, 144–158 (1992).

    Google Scholar 

  56. Ravindranath, N., Little-Ihrig, L., Philips, H.S., Ferrara, N. & Zeleznik, A. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131, 254–260 (1992).

    Article  CAS  Google Scholar 

  57. Redmer, D.A., Kirsch, J.D. & Reynolds, L.P. Production of mitogenic factors by cell types of bovine large estrogen-active and estrogen-inactive follicles. J. Anim. Sci. 69, 237–245 (1991).

    Article  CAS  Google Scholar 

  58. Reynolds, L.P., Killilea, D.S. & Redmer, D.A. Angiogenesis in the female reproductive system. FASEB 6, 886–892 (1992).

    Article  CAS  Google Scholar 

  59. Greenwald, G.S. Temporal and topographic changes in DNA synthesis after induced follicular atresia. Biol. Reprod. 40, 175–181 (1989).

    Article  Google Scholar 

  60. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. natn. Cancer Inst. 82, 4–6 (1990).

    Article  CAS  Google Scholar 

  61. D'Amato, R.J., Loughnan, M.S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. natn Acad. Sci.USA 91, 4082–4085 (1994).

    Article  CAS  Google Scholar 

  62. Risau, W. & Ekblom, P. Production of a heparin-binding angiogenesis factor by the embryonic kidney. J. cell Biol 103, 1101–1107 (1986).

    Article  CAS  Google Scholar 

  63. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846(1993).

    Article  CAS  Google Scholar 

  64. Poole, T.J. & Coffin, J.D. Vasculogenesis and angiogenesis - two distant morpho-genetic mechanisms establish embryonic vascular pattern. J. exp. Zool 251, 224–231 (1989).

    Article  CAS  Google Scholar 

  65. Liotta, L., Kleinerman, J. & Saidel, F. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 34, 997–1004 (1974).

    CAS  PubMed  Google Scholar 

  66. Brem, H., Goto, F., Budson, A., Saunders, L. & Folkman, J. Minimal drug resistance after prolonged antiangiogenic therapy with AGM-1470. Surgical Forum XLV, 674–677 (1994).

    Google Scholar 

  67. Plate, K.H., Breier, G., Welch, H.A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848, (1992).

    Article  CAS  Google Scholar 

  68. Kerbel, R.S. Inhibition of tumour angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. BioEssays 13(1), 31–36 (1991).

    Article  CAS  Google Scholar 

  69. Crowley, N.J. & Siegler, H.F. Relationship between disease-free interval and survival in patients with recurrent melanoma. Arch. Surg. 127, 1303–1308 (1992).

    Article  CAS  Google Scholar 

  70. Ezekowitz, R.A.B., Mulliken, J.B., Folkman, J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. New Engl. J. Med. 326, 1456–1463 (1992) (and corrections New Engl J. Med. 33, 300 (1994)).

    Article  CAS  Google Scholar 

  71. Folkman, J. et al. (unpublished data).

  72. O'Reilly, M.S. et al. (unpublished data).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–30 (1995). https://doi.org/10.1038/nm0195-27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0195-27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing