Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein

Abstract

We have studied the interactions of phosphodiester and phosphorothioate oligodeoxynucleotides with Mac-1 (CD11b/CD18; αMβ2), a heparin-binding integrin found predominately on the surface of polymorphonuciear leukocytes (PMNs), macrophages and natural killer cells. Binding of a homopolymer of thymidine occurred on both the αM and β2 subunits. Soluble fibrinogen, a natural figand for Mac-1, was an excellent competitor of the binding of a phosphorothioate oligodeoxynucleotide to both TNF-α-activated and nonactivated PMNs. Upregulation of cell-surface Mac-1 expression increased cell-surface binding of oligodeoxynucleotides. Binding was inhibited by anti-Mac-1 monoclonal antibodies, and the increase in cell-surface binding was correlated with a three- to fourfold increase in internalization by PMNs. An oligodeoxynucleotide inhibited β2-dependent migration through Matrigel, but the production of reactive oxygen species in PMNs adherent to fibrinogen dramatically increased. Thus, our data demonstrate that Mac-1 is a cell-surface receptor for oligodeoxynucleotides that can medi ate their internalization and that this binding may have important functional consequences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dean, N. & McKay, R. Inhibition of protein kinase C-α expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc. Notl. Acad. Sci. USA 91, 11762–11766 (1994).

    Article  CAS  Google Scholar 

  2. Ratajczak, M. et al. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc. Natl. Acad. Set. USA 89, 11823–11827 (1992).

    Article  CAS  Google Scholar 

  3. Cotter, F. et al. Antisense oligonucleotides suppress B-cell lymphoma growth in a SCID-hu mouse model. Oncogene 9, 3049–3055 (1994).

    CAS  PubMed  Google Scholar 

  4. Shoji, Y. et al. Mechanism of cellular uptake of modified oligonucleotides containing methylphosphonate linkage. Nucleic Acids Res. 19, 5543–5550 (1991).

    Article  CAS  Google Scholar 

  5. Yakubov, L.A. et al. Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors?. Proc Natl. Acad. Sci. USA 86, 6454–6458 (1989).

    Article  CAS  Google Scholar 

  6. Tonkinson, J.L. & Stein, C.A. Patterns of intra cellular compartmentalization, trafficking and acidification of 5′-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res. 22, 4268–4275 (1994).

    Article  CAS  Google Scholar 

  7. Loke, S.L. et al. Characterization of oligodeoxynucleotide transport into living cells. Proc. Natl. Acad. Sci. USA 86, 3474–3478 (1989).

    Article  CAS  Google Scholar 

  8. Beltinger, C. et al. Binding, uptake and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823 (1995).

    Article  CAS  Google Scholar 

  9. Rappaport, J. et al. Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy. Kidneyv Int. 47, 1462–1469 (1995).

    Article  CAS  Google Scholar 

  10. Guvakova, M.A. et al. Phosphorothioate oligodeoxynucleotides bind to basic fi-broblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extra Cellular matrix. J. Biol. Chem. 270, 2620–2627 (1995).

    Article  CAS  Google Scholar 

  11. Kimura, Y. et al. Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK Cell activity and induce IFN. J. Biochem. 116, 991–994 (1994).

    Article  CAS  Google Scholar 

  12. Coombe, D., Watt, S.M. & Parish, C.R. Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate. Blood 84, 739–752 (1994).

    CAS  PubMed  Google Scholar 

  13. Diamond, M., Alon, R., Alon, R., Quinn M. & Springer, T. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J. Cell Biol. 130, 1473–1482 (1995)

    Article  CAS  Google Scholar 

  14. Loike, J. et al. CD11 c/CDI 8 on neutrophils recognizes a domain at the N terminus of the Aa chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044–1048 (1991).

    Article  CAS  Google Scholar 

  15. Wright, S. et al. Complement receptor type three (CD11 b/CDI 8) of human poly-morphonuclear leukocytes recognizes fibrinogen. Proc Natl. Acad. Sci. USA 85, 7734–7738 (1988).

    Article  CAS  Google Scholar 

  16. Wright, S. et al. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc. Natl. Acad. Sci. USA 80, 5699–5703 (1983).

    Article  CAS  Google Scholar 

  17. Diamond, M., Staunton, D., Marlin, S. & Springer, T. Binding of the integrin Mac-1 (CD11 b/CDI 8) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991).

    Article  CAS  Google Scholar 

  18. Alteri, D. & Edgington, T. The saturable high affinity association of factor X to ADP-stimulated monocytes defines a novel function of the Mac-1 receptor. J. Biol. Chem. 263, 7007–7015 (1988).

    Google Scholar 

  19. Loike, J. etal. Fibrin regulates neutrophil migration in response to interleukin 8 and LTB4, TNF or fMLP. J. Exp. Med. 181, 1763–1772 (1995).

    Article  CAS  Google Scholar 

  20. Mohri, H. & Ohkubo, T. Fibrinogen binds to heparin: The relationship of the binding of other adhesive proteins to heparin. Arch. Biochem. Biophys. 303, 27–31 (1993).

    Article  CAS  Google Scholar 

  21. Bates, E., Ferrante, A., Harvey, D. & Poulos, A. Polyunsaturated fatty acids increase neutrophil adherence and integrin receptor expression. J. Leukocyte Biol. 53, 420–426 (1993).

    Article  CAS  Google Scholar 

  22. Diamond M. et al The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043 (1993).

    Article  CAS  Google Scholar 

  23. Yakubov, L. et al. Oligodeoxynucleotides interact with recombinant CD4 at multiple sites. J. Biol. Chem. 268, 18818–18823 (1993).

    CAS  PubMed  Google Scholar 

  24. Higgins, K. et al. Antisense inhibition of the p65 subunit of NF-κB blocks tumorigenicity and causes tumor regression. Proc. Natl. Acad. Sci. USA 90, 9901–9905 (1993).

    Article  CAS  Google Scholar 

  25. Cheng, Y. & Prusoff, W. Relationship between the inhibition constant and the concentration of inhibitor which causes 50% inhibition (ISO) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  Google Scholar 

  26. Stein C.A. Suramin: A novel antineoplastic agent with multiple potential mechanisms of action. Cancer Res. 52, 2239–2248 (1993).

    Google Scholar 

  27. El Khoury, J. et al. Macrophages adhere to glucose-modified fibronectin and collagen IV via their scavenger receptors. J Biol. Chem. 269, 10197–10200 (1994).

    CAS  PubMed  Google Scholar 

  28. Fraser, I., Hughes, D. & Cordon, S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murin scavenger receptor. Nature 364, 343–346 (1993).

    Article  CAS  Google Scholar 

  29. El Khoury J. et al. Scavenger receptor-meiated adhension of microglia to β-amyloid fibrils and secretion of reactive oxygen species. Nature 382, 716–719 (1996).

    Article  CAS  Google Scholar 

  30. Fuortes, M., Jen, W. & Nathan, C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J. Cell. Biol. 120, 777–784 (1993).

    Article  CAS  Google Scholar 

  31. Zhou, L. et al. Differential ligand binding specificities of recombinant CD11b/CD18 integrin l-domain. J. Biol. Chem. 269, 17075–17079 (1994).

    CAS  PubMed  Google Scholar 

  32. Lee, J., Riew, P., Arnaout, M. & Liddington, R. Crystal structure of the A domain from the a subunit of integrin CR3 (CD11 b/CDI 8). Cell 80, 631–638 (1995).

    Article  CAS  Google Scholar 

  33. Stein C.A. et al. Dynamics of the internalization of phosphodiester oligodeoxynu cleotides in HL60 cells. Biochemistry 32, 4855–4861 (1993).

    Article  CAS  Google Scholar 

  34. Krieg, A. et al. Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible. Antisense Res. Dev. 1, 161–171 (1991).

    Article  CAS  Google Scholar 

  35. Zhao, Q. et al. Comparison of cellular binding and uptake of antisense phosphodi ester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res. Dev. 3, 53–66 (1993).

    Article  CAS  Google Scholar 

  36. Zhao, Q. et al. Stage specific oligonucleotide uptake in murine bone marrow B-Cell precursors. Blood 84, 3660–3666 (1994).

    CAS  PubMed  Google Scholar 

  37. Graham, I., Anderson, D., Holers, V.M. & Brown, E. Complement receptor 3 (CR3, Mac-1, Integrin aM (32, CD11 b/CDI 8) is required for tyrosine phosphorylation of paxillin in adherent and nonadherent neutrophils. J. Cell. Biol. 127, 1139–1147 (1994).

    Article  CAS  Google Scholar 

  38. Loike, J., Somes, M. & Silverstein, S. Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am. J. Physiol. 251, C128135 (1986).

    Article  CAS  Google Scholar 

  39. Cai, T. & Wright, S. Energetics of leukocyte integrin activation. J. Biol. Chem. 270, 14538–14365 (1995).

    Google Scholar 

  40. Stein, C.A., Subasinghe C., Shinozuka, K. & Cohen, J. . Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16, 3209–3221 (1988).

    Article  CAS  Google Scholar 

  41. Sambrook J., Fritsch E. & Maniatis T. Molecular Cloning: A Laboratory Manual. 10.66 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1989).

    Google Scholar 

  42. Knorre, D., Vlassov, V., Zarytova, V. & Karpova, G. Nucleotide and oligonucleotide derivatives as enzyme and nucleic acid targeted irreversible inhibitors. Chemical aspects. Adv. Enzyme Regul. 24, 277–300 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benimetskaya, L., Loike, J., Khaled, Z. et al. Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat Med 3, 414–420 (1997). https://doi.org/10.1038/nm0497-414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0497-414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing