Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo

Abstract

Proliferation of smooth muscle cells of the arterial wall in response to local injury is an important aetiologic factor of vascular proliferative disorders such as atherosclerosis and restenosis after angioplasty. Ras proteins are key transducers of mitogenic signals from membrane to nucleus in many cell types. We investigated the role of ras proteins in the vascular response to arterial injury by inactivating cellular ras of rats in which the common carotid artery was subjected to balloon injury. DNA vectors expressing ras transdominant negative mutants, which interfere with ras function, reduced neointimal formation after injury. Our results indicate a key role for ras in smooth muscle cell proliferation and show that the local delivery of transdominant negative mutants of ras in vivo might prevent some of the acute vascular injury caused by balloon injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Virmani, R., Farb, A. & Burke, A.P. Coronary angioplasty from the perspective of atherosclerotic plaque: morphologic predictors of immediate success and restenosis. Am. Heart J. 127, 163–179 (1994).

    Article  CAS  Google Scholar 

  2. McBride, W. et al. Restenosis after successful coronary angioplasty. New Engl. J. Med. 318, 1734–1737 (1988).

    Article  CAS  Google Scholar 

  3. Bourassa, M. Silent myocardial ischemia after coronary angioplasty: distinguishing the shadow from the substances. J.A.C.C. 19, 1410–1411 (1992).

    CAS  Google Scholar 

  4. Holmes, D.R. Jr. et al. Restenosis after percutaneous transluminal coronary angioplasty (coronary angioplasty): A report from the PTCA registry of the National Heart, Lung and Blood Institute. Am. J. Cardiol. 53, 77C–81C (1984).

    Article  Google Scholar 

  5. Ross, R. The pathogenesis of atherosclerosis, a perspective for the 1990's. Nature. 362, 801–809 (1993).

    Article  CAS  Google Scholar 

  6. Benditt, E.P. & Benditt, J.M. Evidence for a monoclonal origin of human 544 atherosclerotic plaques. Proc. natn. Acad. Sci. U.S.A. 70, 1753–1756 (1973).

    Article  CAS  Google Scholar 

  7. Speir, E. et al. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science. 265, 391–394 (1994).

    Article  CAS  Google Scholar 

  8. Madri, J.A., Reidy, M.A., Kocher, O. & Bell, L. Ehdothelial cell behaviour after denudation injury is modulated by transforming growth factor-β1- and fibronectin. Lab. Invest. 60, 755–765 (1989).

    CAS  PubMed  Google Scholar 

  9. Edelman, E.R., Nugent, M.A., Smith, L.T. & Karnovsky, M.J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J. clin. Invest. 89, 465–473 (1992).

    Article  CAS  Google Scholar 

  10. Jawien, A., Bowen-Pope, D.F., Lindner, V., Schwartz, S.M. & Clowes, A.W. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J. clin. Invest. 89, 507–511 (1992).

    Article  CAS  Google Scholar 

  11. Bourne, H.R., Sanders, D.A. & McCormick, F. GTPase superfamily: Conserved structure and molecular mechanism. Nature. 349, 117–127 (1991).

    Article  CAS  Google Scholar 

  12. Boguski, M.S. & McCormick, F. Proteins regulating ras and its relatives. Nature. 366, 643–654 (1993).

    Article  CAS  Google Scholar 

  13. Feramisco, J.R., Gross, M., Kamata, T., Rpsenberg, M. & Sweet, R.W. Microinjection of the oncogene form of human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell. 38, 109–117 (1984).

    Article  CAS  Google Scholar 

  14. Stacey, D.W. & Kung, H.F. Transformation of NIH3T3 cells by microinjection of Ha-ras p21 protein. Nature. 310, 508–511 (1984).

    Article  CAS  Google Scholar 

  15. Thomas, S.M., De Marco, M., D' Arcangelo, G., Halegoua, S. & Brugge, J.S. Ras. is essential for nerve growth factor and phorbol ester-induced tyro-sine phosphorylation of MAP kinases. Cell. 68, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  16. Hallberg, B., Rayter, S.I. & Downward, J. Interaction of raf and in intact mammalian cells upon extracellular stimulation. J. biol. Chem. 269, 3913–3916 (1994).

    CAS  PubMed  Google Scholar 

  17. Kolch, W. et al. Protein kinase Ca activates Raf-1 by direct phosphorylation Nature 364, 249–252 (1993).

    Article  CAS  Google Scholar 

  18. Marhall, C.J. Specificity of receptor tyrostne kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  Google Scholar 

  19. Cai, H., Szeberenyi, J. & Cooper, G.M. Effect of a dominant inhibitory Ha-ras mutation on mitogenic signal transduction on NIH 3T3 cells. Molec. cell. Biol. 10, 5314–5323 (1990).

    Article  CAS  Google Scholar 

  20. Feig, L.A. & Cooper, G.M. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Molec. cell Biol. 8, 3235–3243 (1988).

    Article  CAS  Google Scholar 

  21. Bollag, G. & McCotmick, F.A. Regulators and effectors of ras proteins. Rev. Cell Biol. 7, 601–632 (1991).

    Article  CAS  Google Scholar 

  22. Lai, C.C., Boguski, M., Brack, D. & Powers, S. Influence of guanine nucleotides on complex formation between ras and CDC25 proteins. Molec. cell Biol. 13, 1345–1352 (1993).

    Article  CAS  Google Scholar 

  23. Medema, R.H., Wubbolts, R. & Bos, J.L. Two dominant inhibitory mutants of p21ras interfere with insulin-induced gene expression. Molec. cell. Biol. 11, 5963–5967 (1991).

    Article  CAS  Google Scholar 

  24. Gibbs, J.B., Schaber, M.D., Schofield, T.L. & Scolnick, E.M. Xenopus oocyte germinal-vesicle breakdown induced by [Val12] ras is, inhibited by a cytosol-localized ras mutant. Proc. natn. Acai. Sci. U.S.A. 86, 6630–6634 (1989).

    Article  CAS  Google Scholar 

  25. Michaeli, T., Field, J., Ballester, R., O'Niel, K.O. & Wigler, M. Mutants of H-ras that interfere with ras effector function in Saccharomyces cerevisiae . EMBO J. 8, 3039–3044 (1989).

    Article  CAS  Google Scholar 

  26. Willumsen, B.M., Morris, K., Papageorge, A.G., Hubbert, N.L. & Lowy, D.R. Harvey murine sarcoma virus p21 ras protein: Biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 3, 2581–2585 (1984).

    Article  CAS  Google Scholar 

  27. Vogel, U.S. et al. Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature. 335, 90–93 (1988).

    Article  CAS  Google Scholar 

  28. Serruys, P.W. et al. Incidence of restenosis after successful coronary angioplasty: A time-related phenomenon: A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation. 77, 361–371 (1988).

    Article  CAS  Google Scholar 

  29. Powell, J.S. et al. Inhibitors of angiotensin-converting enzyme prevent neointimal proliferation after vascular injury. Science. 245, 186–188 (1989).

    Article  CAS  Google Scholar 

  30. The Multicenter European Research Trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) study group. Does the new angiotensin converting enzyme inhibitor Cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR study: A multicenter, randomized, double-blind placebo-controlled trial. Circulation. 86, 100–110 (1991).

  31. Herrmann, J.P., Hermans, W.R., Vos, J. & Serruys, P.W. Pharmacological approaches to the prevention of restenosis following angioplasty. The search for the Holy Grail? (Part II). Drugs. 46, 249–262 (1993).

    Article  Google Scholar 

  32. Mulchay, L.S., Smith, M.R. & Stacey, D.W. Requirement for ras protooncogene function during serum-stimulated growth of NIH3T3 cells. Nature. 313, 241–243 (1985).

    Article  Google Scholar 

  33. Carney, W.P. et al. Monoclonal antibodies for detection of normal and oncogenic ras p21. in Human Tumor Antigens and Specific Tumor Therapy. (eds Metzagar, R.S., & Mitchell, M.S.) 53–62 (Liss, New York, 1989).

    Google Scholar 

  34. Simons, M., Edelman, E.R., DeKeyser, J.L., Langer & Rosenberg, R.D. Anti-sense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo . Nature. 359, 67–70 (1992).

    Article  CAS  Google Scholar 

  35. Epstein, S.E., Speir, E. & Finkel, T. Do antisense approaches to the problem of restenosis make sense? Circulation. 88, 1351–1353 (1993).

    Article  CAS  Google Scholar 

  36. Clowes, A.W., Reidy, M.A. & Clowes, N.M. Kinetics of cellular proliferation after arterial injury: I. Smooth muscle growth in the absence of endothelium. Lab. Invest. 49, 327–337 (1983).

    CAS  PubMed  Google Scholar 

  37. Indolfi, C. et al. Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation. (in the press) (1995).

  38. Blumer, K.J. & Johnson, G.L. Diversity in function and regulation of MAP Kinase pathways. Trends Biol. Sci. 19, 236–240 (1994).

    Article  CAS  Google Scholar 

  39. Porras, A., Muszynski, K., Rapp, U.R. & Santos, E. Dissociation between activation of Raf-1 kinase and the 42-kDa mitogen-activated protein ki-nase/90-kDa S6 kinase (MAPK/RSK) cascade in the insulln/ras pathway of adipocytic differentiation of 3T3 LI cells. J. biol Chem. 269, 12741–12748 (1994).

    CAS  PubMed  Google Scholar 

  40. Dixon, W.J. & Massey, J. Jr. Introduction to Statistical Analysis. (New York, McGraw-Hill, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indolfi, C., Avvedimento, E., Rapacciuolo, A. et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1, 541–545 (1995). https://doi.org/10.1038/nm0695-541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0695-541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing