Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Striatal dopamine nerve terminal markers in human, chronic methamphetamine users

Abstract

Methamphetamine is a drug that is significantly abused worldwide. Although long–lasting depletion of dopamine and other dopamine nerve terminal markers has been reported in striatum of nonhuman primates receiving very high doses of the psychostimulant1–3, no information is available for humans. We found reduced levels of three dopamine nerve terminal markers (dopamine, tyrosine hydroxylase and the dopamine transporter) in post–mortem striatum (nucleus accumbens, caudate, putamen) of chronic methamphetamine users. However, levels of DOPA decarboxylase and the vesicular monoamine transporter, known to be reduced in Parkinson's disease4,5, were normal. This suggests that chronic exposure to methamphetamine does not cause permanent degeneration of striatal dopamine nerve terminals at the doses used by the young subjects in our study. However, the dopamine reduction might explain some of the dysphoric effects of the drug, whereas the decreased dopamine transporter could provide the basis for dose escalation occurring in some methamphetamine users.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seiden, L.S., Fishman, M.W. & Schuster, C.R. Long-term methamphetamine-induced changes in tolerant rhesus monkeys. Drug Alcohol Depend. 1, 215–219 (1976).

    Article  CAS  Google Scholar 

  2. Preston, K.L., Wagner, G.C., Schuster, C.R. & Seiden, L.S. Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain. Brain Res. 338, 243–248 (1985).

    Article  CAS  Google Scholar 

  3. Woolverton, W.L., Ricaurte, G.A., Forno, L.S. & Seiden, L.S. Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res. 486, 73–78 (1989).

    Article  CAS  Google Scholar 

  4. Wilson, J.M. et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology (in the press).

  5. Zhong, X.H. et al. Striatal tyrosine hydroxylase and dopa decarboxylase protein in dominantly-inherited olivopontocerebellar atrophy and idiopathic Parkinson's disease. Mov. Disord. 10, 10–17 (1995).

    Article  CAS  Google Scholar 

  6. DiChiara, G. The role of dopamine in drug abuse reviewed from the perspective of its role in motivation. Drug Alcohol Depend. 38, 95–137 (1995).

    Article  CAS  Google Scholar 

  7. Laruelle, M. et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J. Nucl. Med. 36, 1182–1190 (1995).

    CAS  PubMed  Google Scholar 

  8. Hartman, J.A. & Halaris, A.E. Compartmentation of catecholamines in rat brain: Effects of agonists and antagonists. Brain Res. 190, 421–436 (1980).

    Article  Google Scholar 

  9. Kuczenski, R. Amphetamine-haloperidol interactions on striatal and mesolimbic tyrosine hydroxylase activity and dopamine metabolism. J. Pharmacol. Exp. Ther. 215, 135–142 (1980).

    CAS  PubMed  Google Scholar 

  10. Chan, P. et al. Rapid ATP loss caused by methamphetamine in the mouse striatum: Relationship between energy impairment and dopaminergic neurotoxicity. J. Neurochem. 62, 2484–2487 (1994).

    Article  CAS  Google Scholar 

  11. Ricaurte, G.A., Schuster, C.R. & Seiden, L.S. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: A regional study. Brain Res. 193, 153–163 (1980).

    Article  CAS  Google Scholar 

  12. Ricaurte, G.A., Guillery, R.W., Seiden, L.S., Schuster, C.R. & Moore, R.Y. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235, 93–103 (1982).

    Article  CAS  Google Scholar 

  13. Brunswick, D.J., Benmansour, S., Tejani-Butt, S.M. & Hauptmann, M. Effects of high-dose methamphetamine on monoamine uptake sites in rat brain measured by quantitative autoradiography. Synapse 11, 287–293 (1992).

    Article  CAS  Google Scholar 

  14. O'Callaghan, J.P. & Miller, D.B. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol Exp. Ther. 270, 741–751 (1994).

    CAS  PubMed  Google Scholar 

  15. Miller, D.B. & O'Callaghan, J.P. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J. Pharmacol. Exp. Ther. 270, 752–760 (1994).

    CAS  PubMed  Google Scholar 

  16. Kish, S.J., Shannak, K. & Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. N. Engl. J. Med. 318, 867–880 (1988).

    Article  Google Scholar 

  17. DaSilva, J.N., Kilbourn, M.R. & Domino, E.F. In vivo imaging of monoaminergic nerve terminals in normal and MPTP-lesioned primate brain using positron emission tomography (PET). Synapse 14, 128–131 (1993).

    Article  CAS  Google Scholar 

  18. Giros, B. et al. Delineation of discrete domains for substrate, cocaine, and tri-cyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J. Biol. Chem. 269, 15985–15988 (1994).

    CAS  PubMed  Google Scholar 

  19. Vaughan, R.A. Photoaffinity-labeled ligand binding domains on dopamine transporters identified by peptide mapping. Mol. Pharmacol. 47, 956–964 (1994).

    Google Scholar 

  20. Wilson, J.M. et al. Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J. Neurosci. 14, 2966–2979 (1994).

    Article  CAS  Google Scholar 

  21. Vander Borght, T.M., Kilbourn, M.R., Desmond, T.J., Kuhl, D.E. & Frey, K.A. The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur. J. Pharmacol. 294, 577–583 (1995).

    Article  CAS  Google Scholar 

  22. Naudon, L., Leroux-Nicollet, I. & Costentin, J. Short-term treatments with haloperidol or bromocriptine do not alter the density of the monoamine vesicular transporter in the substantia nigra. Neurosci. Lett. 173, 1–4 (1994).

    Article  CAS  Google Scholar 

  23. Wilson, J.M. & Kish, S.J. The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. J. Neurosci. (in the press).

  24. Persico, A.M. et al. Dopaminergic gene expression during amphetamine withdrawal. NeuroReport 4, 41–44 (1993).

    Article  CAS  Google Scholar 

  25. Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  Google Scholar 

  26. Rossetti, Z.L., Hmaidan, Y. & Gessa, L. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol. 221, 227–234 (1992).

    Article  CAS  Google Scholar 

  27. Wise, R.A. & Munn, E. Withdrawal from chronic amphetamine elevates baseline intracranial self-administration thresholds. Psychopharmacology 117, 130–136 (1995).

    Article  CAS  Google Scholar 

  28. Giros, B., Jaber, M., Jones, S.R., Wightman, R.M. & Caron, M.G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996).

    Article  CAS  Google Scholar 

  29. Pifl, C., Drobny, H., Reither, H., Hornykiewicz, O. & Singer, E.A. Mechanism of the dopamine-releasing actions of amphetamine and cocaine: Plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol. Pharmacol. 47, 368–373 (1995).

    CAS  PubMed  Google Scholar 

  30. Kuikka, J.T. et al. Altered serotonin and dopamine transporter densities associated with impulse violent behaviour. J. Nucl. Med. 36, 31P–32P (1995).

    Google Scholar 

  31. Fishbein, D.H., Lozovsky, D. & Jaffe, J.H. Impulsivity, aggression and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol. Psychiatry 25, 1049–1066 (1989).

    Article  CAS  Google Scholar 

  32. Miczek, K.A. & Tidey, J.W. Amphetamines: Aggressive and social behavior. NIDA Res. Monogr. 94, 68–100 (1989).

    CAS  PubMed  Google Scholar 

  33. Riley, H.A. An Atlas of the Basal Ganglia, Brainstem and Spinal Cord. (Hafner, New York, 1960).

  34. Hörtnagl, H., Schlogl, E., Sperk, G. & Hornykiewicz, O. The topographical distribution of the monoaminergic innervation in the basal ganglia of the human brain. Prog. Brain Res. 58, 269–274 (1983).

    Article  Google Scholar 

  35. Ordway, G.A., Smith, K.S. & Haycock, J.W. Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims. J. Neurochem. 62, 680–685 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J., Kalasinsky, K., Levey, A. et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2, 699–703 (1996). https://doi.org/10.1038/nm0696-699

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0696-699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing