Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Osteopetrosis in mice lacking NF-κB1 and NF-κB2

Abstract

The nfkbl and nfkb2 genes encode closely related products regulating immune and inflammatory responses1–3. Their role during development and differentiation remains unclear. The generation of nfkb1 null mice (p50−/−) resulted in altered immune responses, but had no effect on development4. Similarly, nfkb2 knockout mice (p52−/−) did not show developmental defects (J.C. et al., manuscript submitted). We have investigated the potential for in vivo compensatory functions of these genes by generating double-knockout mice. The surprising result was that the animals developed osteopetrosis because of a defect in osteoclast differentiation, suggesting redundant functions of NF-κB1 and NF-κB2 proteins in the development of this cell lineage. The osteopetrotic phenotype was rescued by bone marrow transplantation, indicating that the hematopoietic component was impaired. These results define a new mouse osteopetrotic mutant and implicate NF-κB proteins in bone development, raising new directions in the treatment of bone disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grilli, M., Chiu, J. & Lenardo, M. NF-κB and Rel: Participants in a multiform tran-scriptional regulatory system. Int. Rev. Cytol. 143, 1–62 (1993).

    Article  CAS  Google Scholar 

  2. Kabrun, N. & Enrietto, P. The Rel family of proteins in oncogenesis and differentiation. Semin. Cancer Biol. 5, 103–112 (1994).

    CAS  PubMed  Google Scholar 

  3. Kopp, E. & Ghosh, S. NF-κB and Rel proteins in innate immunity. Adv. Immunol. 58, 1–27 (1995).

    Article  CAS  Google Scholar 

  4. Sha, W., Liou, H.-C., Tuomanen, E. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    Article  CAS  Google Scholar 

  5. Minkin, C. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34, 285–293 (1982).

    Article  CAS  Google Scholar 

  6. Takahashi, N. et al. Postmitotic osteoclast precursors are mononuclear cells which express macrophage-associated phenotypes. Dev. Biol. 163, 212–221 (1994).

    Article  CAS  Google Scholar 

  7. Manolagas, S.C. Role of cytokines in bone resorption. Bone 17, 63S–67S (1995).

    Article  CAS  Google Scholar 

  8. Crigoriadis, A.E., Schellander, K., Wang, Z.-Q. & Wagner, E.F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685–701 (1993).

    Article  Google Scholar 

  9. Pralet, B., Male, P., Neff, L. & Baron, R. Identification of a functional mononuclear precursor of the osteoclast in chicken medullary bone marrow cultures. J. Bone Miner. Res. 7, 405–414 (1992).

    Article  Google Scholar 

  10. Johnson, R.S., Spiegelman, B.M. & Papaioannou, V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71, 577–586 (1992).

    Article  CAS  Google Scholar 

  11. Wang, Z.-Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745 (1992).

    Article  CAS  Google Scholar 

  12. Stein, B. et al. Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J. 12, 3879–3891 (1993).

    Article  CAS  Google Scholar 

  13. Grigoriadis, A.E., Wang, Z.-Q. & Wagner, E. Fos and bone cell development: Lessons from a nuclear oncogene. Trends Genet. 11, 436–442 (1995).

    Article  CAS  Google Scholar 

  14. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  15. Suda, T., Udagawa, N., Nakamura, J., Miyaura, C. & Takahashi, N. Modulation of osteoclast differentiation by local factors. Bone 17, 87S–91S (1995).

    Article  CAS  Google Scholar 

  16. Vortkamp, A. et al. Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science 273, 613–622 (1996).

    Article  CAS  Google Scholar 

  17. Weir, E. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sd. USA 93, 10240–10245 (1996).

    Article  CAS  Google Scholar 

  18. Jimi, E. et al. lnterleukin-1 alfa activates an NF-kappaB-like factor in osteoclast-like cells. J. Biol. Chem. 271, 4605–4608 (1996).

    Article  CAS  Google Scholar 

  19. Whyte, M.P. Carbonic anhydrase II deficiency. Gin. Orthop. Relat. Res. 294, 52–63 (1993).

    Google Scholar 

  20. Manolagas, S.C., Bellido, T. & Jilka, R.L. New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: roles of IL-6 and gpl30. Int. J. Immunopharmacol. 17, 109–116 (1995).

    Article  CAS  Google Scholar 

  21. Stein, B. & Yang, M.X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-κB and C/EBPβ. Mol. Cell. Biol. 15, 4971–4979 (1995).

    Article  CAS  Google Scholar 

  22. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W. Isolation and Fractionation of Mononuclear Cell Populations. (Wiley, New York, 1992).

    Google Scholar 

  23. Grigoriadis, A.E. et al. c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).

    Article  CAS  Google Scholar 

  24. Tondravi, M.M. et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81–84 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iotsova, V., Caamaño, J., Loy, J. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat Med 3, 1285–1289 (1997). https://doi.org/10.1038/nm1197-1285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing