Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization

Abstract

We have shown a novel mechanism of Akt-mediated regulation of the CDK inhibitor p27kip1. Blockade of HER2/neu in tumor cells inhibits Akt kinase activity and upregulates nuclear levels of the CDK inhibitor p27Kip1. Recombinant Akt and Akt precipitated from tumor cells phosphorylated wild-type p27 in vitro. p27 contains an Akt consensus RXRXXT157D within its nuclear localization motif. Active (myristoylated) Akt phosphorylated wild-type p27 in vivo but was unable to phosphorylate a T157A-p27 mutant. Wild-type p27 localized in the cytosol and nucleus, whereas T157A-p27 localized exclusively in the nucleus and was resistant to nuclear exclusion by Akt. T157A-p27 was more effective than wild-type p27 in inhibiting cyclin E/CDK2 activity and cell proliferation; these effects were not rescued by active Akt. Expression of Ser473 phospho Akt in primary human breast cancers statistically correlated with expression of p27 in tumor cytosol. These data indicate that Akt may contribute to tumor-cell proliferation by phosphorylation and cytosolic retention of p27, thus relieving CDK2 from p27-induced inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular Akt phosphorylates p27 in vitro.
Figure 2: Akt associates with and phosphorylates p27 on Thr157.
Figure 3: Akt phosphorylates p27 at Thr157 in vivo.
Figure 4: Phosphorylation of Thr157 in p27 is required for Akt-induced cytosolic localization.
Figure 5: Anti-proliferative effect of T157A-p27 is not rescued by active Akt.
Figure 6: Expression of P-S473 Akt in invasive breast carcinomas correlates with cytosolic p27.

Similar content being viewed by others

References

  1. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  2. Polyak, K. et al. p27 Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes & Dev. 8, 9–22 (1994).

    Article  CAS  Google Scholar 

  3. Philipp-Staheli, J., Payne, S.R. & Kemp, C.J. p27Kip1: Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264, 148–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hengst, L. & Reed, S.I. Translational control of p27 Kip1accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Kato, J.Y., Matsuoka, M., Polyak, K., Massague, J. & Sherr, C.J. Cyclic AMP–induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79, 487–496 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Lane, H.A. et al. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: Receptor overexpression does not determine growth dependency. Mol. Cell. Biol. 20, 3210–3223 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, H.Y., Zhou, B.P., Hung, M.C. & Lee, M.H. Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J. Biol. Chem. 275, 24735–24739 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lenferink, A.E.G., Busse, D., Flanagan, W.M., Yakes, F.M. & Arteaga, C.L. Erb B2/neu kinase modulates cellular p27 Kip1and cyclin D1 through multiple signaling pathways. Cancer Res. 61, 6583–6591 (2001).

    CAS  PubMed  Google Scholar 

  9. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes & Dev. 13, 1181–1189 (1999).

    Article  CAS  Google Scholar 

  10. Shirane, M. et al. Down-regulation of p27Kip1by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886–13893 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Roger, I., Solomon, D.L.C., Sewing, A. & Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene 14, 2373–2381 (1997).

    Article  PubMed  Google Scholar 

  12. Sheaff, R.J., Groudine, M., Gordon, M., Roberts, J.M. & Clurman, B.E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes & Dev. 11, 1464–1478 (1997).

    Article  CAS  Google Scholar 

  13. Carrano, A.C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Sutterlüty, H. et al. p45Skp2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  PubMed  Google Scholar 

  15. Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. . Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science 278, 687–698 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Cardone, M.H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M.T. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27Kip1. Nature 404, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Romashkova, J.A. & Marakov, S.S. NF-κB is a target of Akt in anti-apoptotic PDGF signaling. Nature 401, 86–90 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B. & Hung, M.C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. 94, 3627–3632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3b regulates cyclin D1 proteolysis and subcellular localization. Genes & Dev. 12, 3499–3511 (1998).

    Article  CAS  Google Scholar 

  25. Zhou, B.P., Liao, Y., Xia, W. Spohn, B., Lee, M.H. & Hung, M.C. Cytoplasmic localization of p21Cip/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Kotani, K. et al. Dominant negative forms of Akt (protein kinase B) and atypical protein kinase Cλ do not prevent insulin inhibition of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 274, 21305–21312 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27Kip1, increases its protein stability. J. Biol. Chem. 275, 25146–25154 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Baldassarre, D. et al. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. J. Clin. Invest. 104, 865–874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sánchez-Beato, M. et al., Anomalous High p27/KIP1 Expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood 94, 765–772 (1999).

    PubMed  Google Scholar 

  30. Singh, S.P. et al. Loss or altered subcellular localization of p27 in Barrett's associated adenocarcinoma. Cancer Res. 58, 1730–1735 (1998).

    CAS  PubMed  Google Scholar 

  31. Ciaparrone, M. et al. Localization and expression of p27Kip1 in multistage colorectal carcinogenesis. Cancer Res. 58, 114–122 (1998).

    CAS  PubMed  Google Scholar 

  32. Yaroslavskiy, B., Watkins, S., Donnenberg, A.D., Patton, T.J. & Steinman, R.A. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood 93, 2907–2917 (1999).

    CAS  PubMed  Google Scholar 

  33. Orend, G., Hunter, T. & Ruoslahti, E. Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cip1 and p27Kip1 in anchorage-independent cells. Oncogene 16, 2575–2583 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Soucek, T., Yeung, R.S. & Hengstschläger, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl. Acad. Sci. 95, 15653–15658 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uren, A. et al. Carboxy-terminal domain of p27Kip1 activates Cdc2. J. Biol. Chem. 272, 21699–21672 (1997).

    Article  Google Scholar 

  36. Alessandrini, A., Chiaur, D.S. & Pagano, M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia 11, 342–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Kawada, M. et al. Induction of p27 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 15, 629–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J. 21, 3390–3401. (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujita, E. et al. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 264, 550–555. (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Franke, T.F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Abbott, D.W. & Holt, J.T. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem. 274, 2732–2742 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Medema, R.H., Klompmaker, R., Smits, V.A.J. & Rijksen, G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16, 431–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Van der Geer, P . & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis 15, 544–554 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Albanell, J. et al. Activated extracellular signal–regulated kinases: Association with epidermal growth factor receptor/transforming growth factor α expression in head and neck squamous carcinoma and inhibition by anti–epidermal growth factor receptor treatments. Cancer Res. 61, 6500–6510 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 CA80195, Vanderbilt-Ingram Comprehensive Cancer Center support grant CA68485 and a research grant from Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Arteaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, I., Yakes, F., Rojo, F. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat Med 8, 1145–1152 (2002). https://doi.org/10.1038/nm759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing