Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of receptor oligomerization by FRAP microscopy

Abstract

Here we describe an approach to investigate di- or oligomerization of transmembrane receptors in living cells with fluorescence recovery after photobleaching (FRAP). We immobilized a defined fraction of receptors with antibodies and then measured lateral mobility of the nonimmobilized fraction by FRAP. We validated this approach with CD86 and CD28 as monomeric and dimeric reference proteins, respectively. Di- or oligomerization of G protein–coupled receptors is strongly debated. We studied human β-adrenergic receptors as prototypical G protein–coupled receptors and found that β1-AR shows transient interactions whereas β2-AR can form stable oligomers. We propose that this FRAP method can be widely applied to study di- or oligomerization of cell-surface proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immobilization of proteins by anti-YFP.
Figure 2: Validation of the dual-color FRAP approach using monomeric and dimeric control proteins.
Figure 3: Detection of di- or oligomerization of receptors by dual-color FRAP microscopy.
Figure 4: β2-AR homomeric interaction in cardiac myocytes.
Figure 5: Effects of expression ratios on FRAP of β1-AR and β2-AR.

Similar content being viewed by others

References

  1. Angers, S., Salahpour, A. & Bouvier, M. Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002).

    Article  CAS  Google Scholar 

  2. Jones, K.A. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 (1998).

    Article  CAS  Google Scholar 

  3. White, J.H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682 (1998).

    Article  CAS  Google Scholar 

  4. Fotiadis, D. et al. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    Article  CAS  Google Scholar 

  5. Suda, K., Filipek, S., Palczewski, K., Engel, A. & Fotiadis, D. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. Mol. Membr. Biol. 21, 435–446 (2004).

    Article  CAS  Google Scholar 

  6. Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  Google Scholar 

  7. Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  Google Scholar 

  8. James, J.R., Oliveira, M.I., Carmo, A.M., Iaboni, A. & Davis, S.J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat. Methods 3, 1001–1006 (2006).

    Article  CAS  Google Scholar 

  9. Bouvier, M., Heveker, N., Jockers, R., Marullo, S. & Milligan, G. BRET analysis of GPCR oligomerization: newer does not mean better. Nat. Methods 4, 3–4 author reply 4 (2007).

    Article  CAS  Google Scholar 

  10. Salahpour, A. & Masri, B. Experimental challenge to a 'rigorous' BRET analysis of GPCR oligomerization. Nat. Methods 4, 599–600 author reply 601 (2007).

    Article  CAS  Google Scholar 

  11. Lopez-Gimenez, J.F., Canals, M., Pediani, J.D. & Milligan, G. The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol. Pharmacol. 71, 1015–1029 (2007).

    Article  CAS  Google Scholar 

  12. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  Google Scholar 

  13. Picard, D., Suslova, E. & Briand, P.A. 2-color photobleaching experiments reveal distinct intracellular dynamics of two components of the Hsp90 complex. Exp. Cell Res. 312, 3949–3958 (2006).

    Article  CAS  Google Scholar 

  14. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  Google Scholar 

  15. Reits, E.A. & Neefjes, J.J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001).

    Article  CAS  Google Scholar 

  16. Giese, B. et al. Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis. J. Biol. Chem. 278, 39205–39213 (2003).

    Article  CAS  Google Scholar 

  17. Digby, G.J., Lober, R.M., Sethi, P.R. & Lambert, N.A. Some G protein heterotrimers physically dissociate in living cells. Proc. Natl. Acad. Sci. USA 103, 17789–17794 (2006).

    Article  CAS  Google Scholar 

  18. Lober, R.M., Pereira, M.A. & Lambert, N.A. Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors. J. Neurosci. 26, 12602–12608 (2006).

    Article  CAS  Google Scholar 

  19. Bhatia, S., Edidin, M., Almo, S.C. & Nathenson, S.G. Different cell surface oligomeric states of B7–1 and B7–2: implications for signaling. Proc. Natl. Acad. Sci. USA 102, 15569–15574 (2005).

    Article  CAS  Google Scholar 

  20. Aruffo, A. & Seed, B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA 84, 8573–8577 (1987).

    Article  CAS  Google Scholar 

  21. Lazar-Molnar, E., Almo, S.C. & Nathenson, S.G. The interchain disulfide linkage is not a prerequisite but enhances CD28 costimulatory function. Cell. Immunol. 244, 125–129 (2006).

    Article  CAS  Google Scholar 

  22. Zimmerman, C.M. & Mathews, L.S. Activin receptors: cellular signalling by receptor serine kinases. Biochem. Soc. Symp. 62, 25–38 (1996).

    CAS  PubMed  Google Scholar 

  23. Whorton, M.R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  Google Scholar 

  24. Ernst, O.P., Gramse, V., Kolbe, M., Hofmann, K.P. & Heck, M. Monomeric G protein–coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc. Natl. Acad. Sci. USA 104, 10859–10864 (2007).

    Article  CAS  Google Scholar 

  25. Sartania, N., Appelbe, S., Pediani, J.D. & Milligan, G. Agonist occupancy of a single monomeric element is sufficient to cause internalization of the dimeric β2-adrenoceptor. Cell. Signal. 19, 1928–1938 (2007).

    Article  CAS  Google Scholar 

  26. Webb, W.W., Barak, L.S., Tank, D.W. & Wu, E.S. Molecular mobility on the cell surface. Biochem. Soc. Symp. 46, 191–205 (1981).

    CAS  Google Scholar 

  27. Sprague, B.L. & McNally, J.G. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84–91 (2005).

    Article  CAS  Google Scholar 

  28. Saxton, M.J. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys. J. 81, 2226–2240 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N.A. Lambert (Medical College of Georgia) for methodical advice and him as well as U. Zabel (University of Wuerzburg), C. Krasel (University of Reading) and S.J. Davis (Oxford University) for providing cDNA constructs. This work was funded by the Deutsche Forschungsgemeinschaft (SFB 487 TPA1 to M.J.L. and TPA10 to M.B.).

Author information

Authors and Affiliations

Authors

Contributions

S.D. performed and analyzed experiments; S.D. and M.B. designed experiments; K.-N.K. and M.J.L. contributed important ideas to the experiments; S.E. provided neonatal rat cardiac myocytes and some materials; S.D., M.B., K.-N.K. and M.J.L. wrote the manuscript.

Corresponding author

Correspondence to Moritz Bünemann.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorsch, S., Klotz, KN., Engelhardt, S. et al. Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6, 225–230 (2009). https://doi.org/10.1038/nmeth.1304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing