Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens

Abstract

Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulation of Dnmt3a by chronic cocaine.
Figure 2: Prolonged induction of Dnmt3a by chronic cocaine after 28 d of withdrawal.
Figure 3: DNA methylation regulates cocaine reward.
Figure 4: DNA methylation regulates NAc dendritic spine density.
Figure 5: Regulation of depression-like behavior by Dnmt3a.

Similar content being viewed by others

References

  1. Covington, H.E. III et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460 (2009).

    Article  CAS  Google Scholar 

  2. Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005).

    Article  CAS  Google Scholar 

  3. Levine, A.A. et al. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc. Natl. Acad. Sci. USA 102, 19186–19191 (2005).

    Article  CAS  Google Scholar 

  4. Malvaez, M., Sanchis-Segura, C., Vo, D., Lattal, K.M. & Wood, M.A. Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol. Psychiatry 67, 36–43 (2010).

    Article  CAS  Google Scholar 

  5. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  Google Scholar 

  6. Renthal, W. et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62, 335–348 (2009).

    Article  CAS  Google Scholar 

  7. Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56, 517–529 (2007).

    Article  CAS  Google Scholar 

  8. Schroeder, F.A. et al. Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology 33, 2981–2992 (2008).

    Article  CAS  Google Scholar 

  9. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E.J. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  Google Scholar 

  10. Feng, J., Chang, H., Li, E. & Fan, G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res. 79, 734–746 (2005).

    Article  CAS  Google Scholar 

  11. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    Article  CAS  Google Scholar 

  12. Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron 53, 857–869 (2007).

    Article  CAS  Google Scholar 

  13. Levenson, J.M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 15763–15773 (2006).

    Article  CAS  Google Scholar 

  14. Nelson, E.D., Kavalali, E.T. & Monteggia, L.M. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J. Neurosci. 28, 395–406 (2008).

    Article  CAS  Google Scholar 

  15. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  Google Scholar 

  16. Lee, K.W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor–containing medium spiny neurons in nucleus accumbens. Proc. Natl. Acad. Sci. USA 103, 3399–3404 (2006).

    Article  CAS  Google Scholar 

  17. Pulipparacharuvil, S. et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 59, 621–633 (2008).

    Article  CAS  Google Scholar 

  18. Robinson, T.E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).

    Article  CAS  Google Scholar 

  19. Dong, E., Nelson, M., Grayson, D.R., Costa, E. & Guidotti, A. Clozapine and sulpiride, but not haloperidol or olanzapine, activate brain DNA demethylation. Proc. Natl. Acad. Sci. USA 105, 13614–13619 (2008).

    Article  CAS  Google Scholar 

  20. Brueckner, B. et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 65, 6305–6311 (2005).

    Article  CAS  Google Scholar 

  21. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  Google Scholar 

  22. Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  Google Scholar 

  23. Russo, S.J. et al. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529–3537 (2009).

    Article  CAS  Google Scholar 

  24. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997 (2008).

    Article  Google Scholar 

  25. Wilkinson, M.B. et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci. 29, 7820–7832 (2009).

    Article  CAS  Google Scholar 

  26. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  Google Scholar 

  27. Krishnan, V. et al. AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol. Psychiatry 64, 691–700 (2008).

    Article  CAS  Google Scholar 

  28. Porsolt, R.D., Le Pichon, M. & Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732 (1977).

    Article  CAS  Google Scholar 

  29. Ooi, S.K. & Bestor, T.H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    Article  CAS  Google Scholar 

  30. Christoffell, D. et al. Nuclear factor kappa B regulates synaptic and behavioral plasticity induced by chronic stress. Soc. Neurosci. Abs. (in the press).

  31. Li, Y., Acerbo, M.J. & Robinson, T.E. The induction of behavioral sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. Eur. J. Neurosci. 20, 1647–1654 (2004).

    Article  Google Scholar 

  32. Norrholm, S.D. et al. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116, 19–22 (2003).

    Article  CAS  Google Scholar 

  33. Shen, H.W. et al. Altered dendritic spine plasticity in cocaine-withdrawn rats. J. Neurosci. 29, 2876–2884 (2009).

    Article  CAS  Google Scholar 

  34. Kourrich, S. & Thomas, M.J. Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J. Neurosci. 29, 12275–12283 (2009).

    Article  CAS  Google Scholar 

  35. Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    Article  CAS  Google Scholar 

  36. Azdad, K. et al. Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion. PLoS One 4, e6908 (2009).

    Article  Google Scholar 

  37. Huang, Y.H. et al. In vivo cocaine experience generates silent synapses. Neuron 63, 40–47 (2009).

    Article  CAS  Google Scholar 

  38. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A. & Noguchi, J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2010).

    Article  CAS  Google Scholar 

  39. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466 (2007).

    Article  CAS  Google Scholar 

  40. Graham, D.L. et al. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat. Neurosci. 10, 1029–1037 (2007).

    Article  CAS  Google Scholar 

  41. Grimm, J.W. et al. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742–747 (2003).

    Article  CAS  Google Scholar 

  42. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  Google Scholar 

  43. Jüttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl. Acad. Sci. USA 91, 11797–11801 (1994).

    Article  Google Scholar 

  44. Noonan, M.A., Choi, K.H., Self, D.W. & Eisch, A.J. Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J. Neurosci. 28, 2516–2526 (2008).

    Article  CAS  Google Scholar 

  45. Spano, M.S., Ellgren, M., Wang, X. & Hurd, Y.L. Prenatal cannabis exposure increases heroin seeking with allostatic changes in limbic enkephalin systems in adulthood. Biol. Psychiatry 61, 554–563 (2007).

    Article  CAS  Google Scholar 

  46. Clark, M.S. et al. Overexpression of 5-HT1B receptor in dorsal raphe nucleus using herpes simplex virus gene transfer increases anxiety behavior after inescapable stress. J. Neurosci. 22, 4550–4562 (2002).

    Article  CAS  Google Scholar 

  47. Linhart, H.G. et al. Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 21, 3110–3122 (2007).

    Article  CAS  Google Scholar 

  48. Vialou, V. et al. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nat. Neurosci. 13, 745–752 (2010).

    Article  CAS  Google Scholar 

  49. Frick, K.M. & Gresack, J.E. Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice. Behav. Neurosci. 117, 1283–1291 (2003).

    Article  Google Scholar 

  50. Radley, J.J. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb. Cortex 16, 313–320 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Jaenisch for the generous gift of the Dnmt3a plasmid and W.G. Janssen for animal perfusions. We also thank A.J. Robison for helpful discussions and comments on the manuscript. This work was supported by grants from the National Institute on Drug Abuse and National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and E.J.N. were responsible for the overall study design. Q.L., J.F., I.M. and J.W.K. designed and conducted the RNA and ChIP experiments and analyzed the results. Q.L., V.V., H.E.C., I.M., B.W. and R.S.O. designed and performed the CPP, locomotor sensitization, and learning and memory behavioral experiments. Q.L., V.V., R.S.O., B.W., S.D.I. and C.A.B. designed and conducted the submaximal defeat, forced swim and social defeat experiments. Q.L., D.D., D.M.D., J.H.M., B.W. and E.L.W. designed and conducted the dendritic spine analysis. Q.L. carried out confocal imaging of dendritic spines, D.D. performed single-cell filling, V.V., H.E.C., Q.L. and B.W. performed stereotaxic surgeries, W.R. and Q.L. performed HSV cloning of Dnmt3a, F.H., H.W., M.A.N., Y.R., A.J.E., M.K. and Y.L.H. designed and performed the self-administration experiments, R.L.N. prepared new HSV vectors and performed quality-control experiments on all of the HSV vectors, E.M. prepared new AAV vectors and performed quality-control experiments on all of the AAV vectors, Q.X. performed ChIP-chip statistical analyses, G.F. provided loxP-flanked Dnmt mice and Q.L. and E.J.N. wrote the paper with the help of the other authors.

Corresponding author

Correspondence to Eric J Nestler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaPlant, Q., Vialou, V., Covington, H. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 13, 1137–1143 (2010). https://doi.org/10.1038/nn.2619

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing