Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine

Abstract

How animals maintain proper amounts of sleep yet remain flexible to changes in environmental conditions remains unknown. We found that environmental light suppressed the wake-promoting effects of dopamine in fly brains. The ten large lateral-ventral neurons (l-LNvs), a subset of clock neurons, are wake-promoting and respond to dopamine, octopamine and light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Notably, light exposure not only suppressed l-LNv responses, but also synchronized responses of neighboring l-LNvs. This regulation occurred by distinct mechanisms: light-mediated suppression of octopamine responses was regulated by the circadian clock, whereas light regulation of dopamine responses occurred by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues on the basis of the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light suppressed the wake-promoting effects of dopamine.
Figure 2: The l-LNvs form membrane contacts with dopaminergic and octopaminergic neurons.
Figure 3: The l-LNvs responded to dopamine or octopamine application by increasing cAMP.
Figure 4: 12-h light exposure suppressed the responses of l-LNvs to dopamine or octopamine.
Figure 5: The circadian clock (PER) specifically promotes octopamine-induced responses in l-LNvs at night.
Figure 6: Light suppresses dopamine responses by upregulating inhibitory dopamine receptors.

Similar content being viewed by others

References

  1. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).

    Article  CAS  Google Scholar 

  2. Ho, K.S. & Sehgal, A. Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol. 393, 772–793 (2005).

    Article  CAS  Google Scholar 

  3. Keene, A.C. et al. Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr. Biol. 20, 1209–1215 (2010).

    Article  CAS  Google Scholar 

  4. Shang, Y., Griffith, L.C. & Rosbash, M. Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc. Natl. Acad. Sci. USA 105, 19587–19594 (2008).

    Article  CAS  Google Scholar 

  5. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  Google Scholar 

  6. Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A–dependent mechanisms. J. Neurosci. 28, 9377–9385 (2008).

    Article  CAS  Google Scholar 

  7. Crocker, A., Shahidullah, M., Levitan, I.B. & Sehgal, A. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65, 670–681 (2010).

    Article  CAS  Google Scholar 

  8. Parisky, K.M. et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60, 672–682 (2008).

    Article  CAS  Google Scholar 

  9. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  Google Scholar 

  10. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  Google Scholar 

  11. Sheeba, V. et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545 (2008).

    Article  CAS  Google Scholar 

  12. Donlea, J.M., Ramanan, N. & Shaw, P.J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324, 105–108 (2009).

    Article  CAS  Google Scholar 

  13. Sheeba, V., Gu, H., Sharma, V.K., O'Dowd, D.K. & Holmes, T.C. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99, 976–988 (2008).

    Article  Google Scholar 

  14. Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C. & Taghert, P.H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802 (1999).

    Article  CAS  Google Scholar 

  15. Shafer, O.T. et al. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58, 223–237 (2008).

    Article  CAS  Google Scholar 

  16. Kula-Eversole, E. et al. Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc. Natl. Acad. Sci. USA 107, 13497–13502 (2010).

    Article  Google Scholar 

  17. Shakiryanova, D. & Levitan, E.S. Prolonged presynaptic posttetanic cyclic GMP signaling in Drosophila motoneurons. Proc. Natl. Acad. Sci. USA 105, 13610–13613 (2008).

    Article  CAS  Google Scholar 

  18. Feinberg, E.H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

    Article  CAS  Google Scholar 

  19. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  Google Scholar 

  20. Crocker, A. & Sehgal, A. Genetic analysis of sleep. Genes Dev. 24, 1220–1235 (2010).

    Article  CAS  Google Scholar 

  21. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  Google Scholar 

  22. Chiang, A.S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).

    Article  CAS  Google Scholar 

  23. Mao, Z. & Davis, R.L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural. Circuits 3, 5 (2009).

    Article  Google Scholar 

  24. Sugamori, K.S., Demchyshyn, L.L., McConkey, F., Forte, M.A. & Niznik, H.B. A primordial dopamine D1-like adenylyl cyclase–linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines. FEBS Lett. 362, 131–138 (1995).

    Article  CAS  Google Scholar 

  25. Hall, J.C. Systems approaches to biological rhythms in Drosophila. Methods Enzymol. 393, 61–185 (2005).

    Article  CAS  Google Scholar 

  26. Bonci, A. & Hopf, F.W. The dopamine D2 receptor: new surprises from an old friend. Neuron 47, 335–338 (2005).

    Article  CAS  Google Scholar 

  27. Han, K.A., Millar, N.S., Grotewiel, M.S. & Davis, R.L. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16, 1127–1135 (1996).

    Article  CAS  Google Scholar 

  28. Hearn, M.G. et al. A Drosophila dopamine 2–like receptor: molecular characterization and identification of multiple alternatively spliced variants. Proc. Natl. Acad. Sci. USA 99, 14554–14559 (2002).

    Article  CAS  Google Scholar 

  29. Nitabach, M.N., Sheeba, V., Vera, D.A., Blau, J. & Holmes, T.C. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. J. Neurobiol. 62, 1–13 (2005).

    Article  CAS  Google Scholar 

  30. Wijnen, H., Naef, F., Boothroyd, C., Claridge-Chang, A. & Young, M.W. Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet. 2, e39 (2006).

    Article  Google Scholar 

  31. Helfrich-Förster, C. et al. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70 (2007).

    Article  Google Scholar 

  32. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  33. Cayre, M., Buckingham, S.D., Yagodin, S. & Sattelle, D.B. Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine and dopamine. J. Neurophysiol. 81, 1–14 (1999).

    Article  CAS  Google Scholar 

  34. Gervasi, N., Tchenio, P. & Preat, T. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 65, 516–529 (2010).

    Article  CAS  Google Scholar 

  35. Soille, P. Morphological Image Analysis: Principles and Applications (Springer-Verlag, Secaucus, New Jersey, USA, 2003).

  36. Meyer, F. Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Taghert for kindly providing pdfGal4 (X) and UAS-EPAC flies. We obtained UAS-D2R-RNAi lines from the Vienna Drosophila RNAi center. We are grateful to O. Shafer for technical help with cAMP imaging. We also thank E. Dougherty for assistance in confocal microscopy, K. Palm and S. Pescatore for administrative assistance and C. Vecsey for comments on the manuscript. The work was supported in part by grants from the US National Institutes of Health (PO1 NS044232-06 to M.R., R01 MH067284 to L.C.G. and NIH R01 EB007042 to P. Hong).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived the project. Y.S., P. Haynes, N.P. and F.G. performed the experiments. K.I.H., J.P. and P. Hong developed the algorithm for the automated imaging analysis. Y.S., L.C.G. and M.R. wrote the paper.

Corresponding author

Correspondence to Michael Rosbash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Haynes, P., Pírez, N. et al. Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14, 889–895 (2011). https://doi.org/10.1038/nn.2860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing