Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons

Abstract

Nociceptors are a subset of small primary afferent neurons that respond to noxious chemical, thermal and mechanical stimuli. Ion channels in nociceptors respond differently to noxious stimuli and generate electrical signals in different ways. Anoctamin 1 (ANO1 also known as TMEM16A) is a Ca2+-activated chloride channel that is essential for numerous physiological functions. We found that ANO1 was activated by temperatures over 44 °C with steep heat sensitivity. ANO1 was expressed in small sensory neurons and was highly colocalized with nociceptor markers, which suggests that it may be involved in nociception. Application of heat ramps to dorsal root ganglion (DRG) neurons elicited robust ANO1-dependent depolarization. Furthermore, knockdown or deletion of ANO1 in DRG neurons substantially reduced nociceptive behavior in thermal pain models. These results indicate that ANO1 is a heat sensor that detects nociceptive thermal stimuli in sensory neurons and possibly mediates nociception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heat activates ANO1.
Figure 2: Synergistic effects of heat and Ca2+ on ANO1 activation.
Figure 3: ANO1 is expressed mainly in nociceptors of DRG neurons.
Figure 4: Heat-induced Cl- currents depolarize DRG neurons.
Figure 5: Pharmacological block or knockdown of ANO1 reduces nocifensive behaviors.
Figure 6: Conditional knockout of ANO1 in DRGs reduces thermal hyperalgesia.

Similar content being viewed by others

References

  1. Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  Google Scholar 

  2. Perl, E.R. Ideas about pain, a historical view. Nat. Rev. Neurosci. 8, 71–80 (2007).

    Article  CAS  Google Scholar 

  3. Caterina, M.J. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R64–R76 (2007).

    Article  CAS  Google Scholar 

  4. Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  Google Scholar 

  5. Talavera, K., Nilius, B. & Voets, T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends Neurosci. 31, 287–295 (2008).

    Article  CAS  Google Scholar 

  6. Caterina, M.J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  CAS  Google Scholar 

  7. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  8. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  9. Davis, J.B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  CAS  Google Scholar 

  10. Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  Google Scholar 

  11. Hu, H.Z. et al. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2 and TRPV3. J. Biol. Chem. 279, 35741–35748 (2004).

    Article  CAS  Google Scholar 

  12. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  Google Scholar 

  13. Macpherson, L.J. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  Google Scholar 

  14. Karashima, Y. et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. USA 106, 1273–1278 (2009).

    Article  CAS  Google Scholar 

  15. Story, G.M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  Google Scholar 

  16. Woodbury, C.J. et al. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J. Neurosci. 24, 6410–6415 (2004).

    Article  CAS  Google Scholar 

  17. Hartzell, C., Putzier, I. & Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758 (2005).

    Article  CAS  Google Scholar 

  18. Frings, S., Reuter, D. & Kleene, S.J. Neuronal Ca2+ -activated Cl channels—homing in on an elusive channel species. Prog. Neurobiol. 60, 247–289 (2000).

    Article  CAS  Google Scholar 

  19. Cia, D. et al. Voltage-gated channels and calcium homeostasis in mammalian rod photoreceptors. J. Neurophysiol. 93, 1468–1475 (2005).

    Article  CAS  Google Scholar 

  20. Lalonde, M.R., Kelly, M.E. & Barnes, S. Calcium-activated chloride channels in the retina. Channels (Austin) 2, 252–260 (2008).

    Article  Google Scholar 

  21. Kleene, S.J. High-gain, low-noise amplification in olfactory transduction. Biophys. J. 73, 1110–1117 (1997).

    Article  CAS  Google Scholar 

  22. Lowe, G. & Gold, G.H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993).

    Article  CAS  Google Scholar 

  23. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590–594 (2008).

    Article  CAS  Google Scholar 

  24. Schroeder, B.C., Cheng, T., Jan, Y.N. & Jan, L.Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019–1029 (2008).

    Article  CAS  Google Scholar 

  25. Yang, Y.D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    Article  CAS  Google Scholar 

  26. Voets, T. & Nilius, B. TRPs make sense. J. Membr. Biol. 192, 1–8 (2003).

    Article  CAS  Google Scholar 

  27. Vyklický, L. et al. Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat. J. Physiol. (Lond.) 517, 181–192 (1999).

    Article  Google Scholar 

  28. Large, W.A. & Wang, Q. Characteristics and physiological role of the Ca2+-activated Cl conductance in smooth muscle. Am. J. Physiol. 271, C435–C454 (1996).

    Article  CAS  Google Scholar 

  29. Hans, G., Deseure, K. & Adriaensen, H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides 42, 119–132 (2008).

    Article  CAS  Google Scholar 

  30. Lang, P.M. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J. Neurophysiol. 90, 3295–3303 (2003).

    Article  CAS  Google Scholar 

  31. Zholos, A. Ca2+- and volume-sensitive chloride currents are differentially regulated by agonists and store-operated Ca2+ entry. J. Gen. Physiol. 125, 197–211 (2005).

    Article  CAS  Google Scholar 

  32. Kaneko, H., Putzier, I., Frings, S. & Gensch, T. Determination of intracellular chloride concentration in dorsal root ganglion neurons by fluorescence lifetime imaging. in Calcium-Activated Chloride Channels (ed. Fuller, C.M.) 167–189 (Academic, San Diego, 2002).

  33. Rocha-González, H.I., Mao, S. & Alvarez-Leefmans, F.J. Na+, K+, 2Cl cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects. J. Neurophysiol. 100, 169–184 (2008).

    Article  Google Scholar 

  34. Rock, J.R., Futtner, C.R. & Harfe, B.D. The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev. Biol. 321, 141–149 (2008).

    Article  CAS  Google Scholar 

  35. Shibata, M. et al. Type F scavenger receptor SREC-I interacts with advillin, a member of the gelsolin/villin family, and induces neurite-like outgrowth. J. Biol. Chem. 279, 40084–40090 (2004).

    Article  CAS  Google Scholar 

  36. Hasegawa, H., Abbott, S., Han, B.X., Qi, Y. & Wang, F. Analyzing somatosensory axon projections with the sensory neuron–specific Advillin gene. J. Neurosci. 27, 14404–14414 (2007).

    Article  CAS  Google Scholar 

  37. Price, T.J., Cervero, F., Gold, M.S., Hammond, D.L. & Prescott, S.A. Chloride regulation in the pain pathway. Brain Res. Rev. 60, 149–170 (2009).

    Article  CAS  Google Scholar 

  38. Alvarez-Leefmans, F.J. Chloride transporters in presynaptic inhibition, pain and neurogenic inflammation. in Physiology and Pathology of Chloride Transporters and Channels in the Nervous System (eds. Alvarez-Leefmans, F.J. & Delpire, E.) 439–470 (Academic, London, 2009).

  39. Willis, W.D. John Eccles' studies of spinal cord presynaptic inhibition. Prog. Neurobiol. 78, 189–214 (2006).

    Article  Google Scholar 

  40. Labrakakis, C., Tong, C.K., Weissman, T., Torsney, C. & MacDermott, A.B. Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J. Physiol. (Lond.) 549, 131–142 (2003).

    Article  CAS  Google Scholar 

  41. Scott, R.H., Sutton, K.G., Griffin, A., Stapleton, S.R. & Currie, K.P. Aspects of calcium-activated chloride currents: a neuronal perspective. Pharmacol. Ther. 66, 535–565 (1995).

    Article  CAS  Google Scholar 

  42. Willis, E.F., Clough, G.F. & Church, M.K. Investigation into the mechanisms by which nedocromil sodium, frusemide and bumetanide inhibit the histamine-induced itch and flare response in human skin in vivo. Clin. Exp. Allergy 34, 450–455 (2004).

    Article  CAS  Google Scholar 

  43. Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).

    Article  CAS  Google Scholar 

  44. Xiao, B., Coste, B., Mathur, J. & Patapoutian, A. Temperature-dependent STIM1 activation induces Ca2+ influx and modulates gene expression. Nat. Chem. Biol. 7, 351–358 (2011).

    Article  CAS  Google Scholar 

  45. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  46. Koo, J.Y. et al. Hydroxy-alpha-sanshool activates TRPV1 and TRPA1 in sensory neurons. Eur. J. Neurosci. 26, 1139–1147 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the World Class University project (R31-2011-00101030), the Creative Research Initiatives Program (20120001246) and a grant (2011K000275) from the Brain Research Center of the 21st Century Frontier Research Program funded by of the Ministry of Education and Science and Technology and the National Research Foundation of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

H.C. carried out the patch clamp and behavioral studies and analyzed data. Y.D.Y. and Y.J. performed molecular biological work. J.L. and T.K. performed patch-clamp recordings. B.L., F.W., R.R. and J.N.W. generated CKO mice. S.K.B. and H.S.N. carried out behavioral studies. B.D.H. generated ANO1 systemic knockout mice. U.O. wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Uhtaek Oh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H., Yang, Y., Lee, J. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci 15, 1015–1021 (2012). https://doi.org/10.1038/nn.3111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing