Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A

Abstract

Fast desensitization is an important regulatory mechanism of neuronal NMDA receptor function. Only recombinant NMDA receptors composed of NR1/NR2A exhibit a fast component of desensitization similar to neuronal NMDA receptors. Here we report that the fast desensitization of NR1/NR2A receptors is caused by ambient zinc, and that a positive allosteric interaction occurs between the extracellular zinc-binding site located in the amino terminal domain and the glutamate-binding domain of NR2A. The relaxation of macroscopic currents reflects a shift to a new equilibrium due to increased zinc affinity after binding of glutamate. We also show a similar interaction between the ifenprodil binding site and the glutamate binding site of NR1/NR2B receptors. These data raise the possibility that there is an allosteric interaction between the amino terminal domain and the ligand-binding domain of other glutamate receptors. Our findings may provide insight into how zinc and other extracellular modulators regulate NMDA receptor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Desensitization of recombinant NR1/NR2A receptors has two kinetic components.
Figure 2: EDTA abolishes the fast component of NR1/NR2A receptor desensitization.
Figure 3: Tricine-buffered zinc causes fast desensitization of recombinant and neuronal NR1/NR2A receptors.
Figure 4: Histidine point mutations in the amino terminal domain of NR2A abolish the fast desensitization of NR1/NR2A receptors.
Figure 5: The degree and the time course of the zinc-induced fast desensitization of NR1/NR2A receptors depend on extracellular free zinc concentration.
Figure 6: pH influences zinc-induced fast desensitization of NR1/NR2A receptors.
Figure 7: Ifenprodil produces desensitization of NR1/NR2B receptors.
Figure 8: A model for an allosteric interaction between the amino terminal domain and S1/S2 domain of NR2.

Similar content being viewed by others

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  2. McBain, C. J. & Mayer, M. L. N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74, 723–760 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Mayer, M. L., Vyklicky, L. Jr. & Clements, J. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425–427 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Benveniste, M., Clements, J., Vyklicky, L. & Mayer, M. L. Kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. (Lond.) 428, 333–357 (1990).

    Article  CAS  Google Scholar 

  5. Sather, W., Johnson, J. W., Henderson, G. & Ascher, P. Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron 4, 725–731 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Sather, W., Dieudonne, S., Macdonald, J. F. & Ascher, P. Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J. Physiol. (Lond.) 450, 643–672 (1992).

    Article  CAS  Google Scholar 

  7. Tong, G. & Jahr, C. E. Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J. Neurophysiol. 72, 754–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Tong, G., Shepherd, D. & Jahr, C. E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, G. D., Cliford, D. B. & Zorumski, C. F. The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization. Neuroscience 39, 787–797 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Vyklicky, L. Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurones. J. Physiol. (Lond.) 470, 575–600 (1993).

    Article  CAS  Google Scholar 

  11. Legendre, P., Rosenmund, C. & Westbrook, G. L. Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13, 674–684 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenmund, C. & Westbrook, G. L. Rundown of N-methyl-D-aspartate channels during whole-cell recording in rat hippocampal neurons: role of Ca2+ and ATP. J. Physiol. (Lond.) 470, 705–729 (1993).

    Article  CAS  Google Scholar 

  14. Krupp, J. J., Vissel, B., Heinemann, S. F. & Westbrook, G.L. N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Villarroel, A., Regalado, M. P. & Lerma, J. Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20, 329–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, N., Moshaver, A. & Raymond, L. A. Differential sensitivity of recombinant N-Methyl-D-Aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51, 1015–1023 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Krupp, J. J., Vissel, B., Heinemann, S. F. & Westbrook, G. L. Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol. Pharmacol. 50, 1680–1688 (1996).

    CAS  PubMed  Google Scholar 

  18. Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F. & Westbrook, G. L. Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1178 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medina, I. et al. Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J. Physiol. (Lond.) 482, 567–573 (1995).

    Article  CAS  Google Scholar 

  20. Zhang, S., Ehlers, M. D., Bernhardt, J. P., Su, C. T. & Huganir, R. L. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21, 443–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Kew, J. N. & Kemp, J. A. An allosteric interaction between the NMDA receptor polyamine and ifenprodil sites in rat cultured cortical neurones. J. Physiol. (Lond.) 512, 17–28 (1998).

    Article  CAS  Google Scholar 

  22. Mott, D. D. et al. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat. Neurosci. 1, 659–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng, F., Gingrich, M. B., Traynelis, S. F. & Conn, P. J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Traynelis, S. F., Burgess, M. F., Zheng, F., Lyuboslavsky, P. & Powers, J. L. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163–6175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bers, D., Patton, C. & Nuccitelli, R. A practical guide to the preparation of Ca buffers. Methods Cell Biol. 40, 3–29 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Vallano, M. L., Lambolez, B, Audinat, E. & Rossier, J. Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J. Neurosci. 16, 631–639 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, Y .P. & Lipton, S. A. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23, 171–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Low, C.-M., Zheng, F., Lyuboslavsky, P. & Traynelis, S. F. Molecular determinants of coordinated proton and zinc inhibition of NR1/NR2A receptors. Proc. Natl. Acad. Sci. USA 97, 11062–11067 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fayyazuddin, A., Villarroel, A., Le Goff, A., Lerma, J. & Neyton, J. Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25, 683–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Paoletti, P. et al. Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron 28, 911–925 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Monod, J., Wyman, J. & Changeux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  PubMed  Google Scholar 

  33. Gallagher, M. J., Huang, H., Grant, E. R. & Lynch, D. R. The NR2B-specific interactions of polyamines and protons with the N-methyl-D-aspartate receptor. J. Biol. Chem. 272, 24971–24979 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Brimecombe, J. C., Gallagher, M. J., Lynch, D. R. & Aizenman, E. An NR2B point mutation affecting haloperidol and CP101,606 sensitivity of single recombinant N-methyl-D-aspartate receptors. J. Pharmacol. Exp. Ther. 286, 627–634 (1998).

    CAS  PubMed  Google Scholar 

  35. Traynelis, S. F. & Cull-Candy, S. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurons. J. Physiol. (Lond.) 433, 727–763 (1991).

    Article  CAS  Google Scholar 

  36. Lester, R. A. & Jahr, C. E. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12, 635–643 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Traynelis, S. F. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. (Lond.) 503, 513–531 (1997).

    Article  CAS  Google Scholar 

  41. Traynelis, S. F. Software based correction of single compartment series resistance errors. J. Neurosci. Meth. 86, 25–34 (1998).

    Article  CAS  Google Scholar 

  42. Zar, J. H. in Biostatistical Analysis (ed. Zar, J. H.) 584–585 (Prentice Hall, Upper Saddle River, New Jersey, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank M.L. Mayer, J. Neyton and P. Paoletti for reading the manuscript. S. F. Heinemann provided NR1 and NR2B. S. Nakanishi provided NR2A. D. Lynch and E. Aizenman provided NR2B(E201R). This work is supported by grants from NINDS (NS 39418 to F.Z., NS 36654 to S.F.T. and NS 31373 and NS 34876 to P.J. Conn), HHMI (K.E.), the Benzon Society (T.B.) and a Young Investigator Award from NARSAD to F.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Erreger, K., Low, CM. et al. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat Neurosci 4, 894–901 (2001). https://doi.org/10.1038/nn0901-894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0901-894

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing