Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter

Abstract

Cone snails use venom containing a cocktail of peptides ('conopeptides') to capture their prey. Many of these peptides also target mammalian receptors, often with exquisite selectivity. Here we report the discovery of two new classes of conopeptides. One class targets α1-adrenoceptors (ρ-TIA from the fish-hunting Conus tulipa), and the second class targets the neuronal noradrenaline transporter (χ-MrIA and χ-MrIB from the mollusk-hunting C. marmoreus). ρ-TIA and χ-MrIA selectively modulate these important membrane-bound proteins. Both peptides act as reversible non-competitive inhibitors and provide alternative avenues for the identification of inhibitor drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liquid chromatography/mass spectroscopy (LC/MS) analysis of crude venom from C. tulipa and C. marmoreus.
Figure 2: Mode of action of ρ-TIA.
Figure 3: Mode of action of χ-MrIA-nh2.
Figure 4: NMR-derived structures of ρ-TIA and χ-MrIB-nh2.

Similar content being viewed by others

References

  1. Olivera, B. M. et al. Diversity of Conus neuropeptides. Science 249, 257–263 (1990).

    Article  CAS  Google Scholar 

  2. Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A. & Gray, W. R. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23, 5087–5090 (1984).

    Article  CAS  Google Scholar 

  3. Cruz, L. J. et al. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260, 9280–9288 (1985).

    CAS  PubMed  Google Scholar 

  4. Fainzilber, M., Kofman, O., Zlotkin, E. & Gordon, D. A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J. Biol. Chem. 269, 2574–2580 (1994).

    CAS  PubMed  Google Scholar 

  5. McIntosh, J. M. et al. A new family of conotoxins that blocks voltage-gated sodium channels. J. Biol. Chem. 270, 16796–16802 (1995).

    Article  CAS  Google Scholar 

  6. Craig, A. G. et al. An O-glycosylated neuroexcitatory Conus peptide. Biochemistry 37, 16019–16025 (1998).

    Article  CAS  Google Scholar 

  7. Shon, K. J. et al. κ-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J. Biol. Chem. 273, 33–38 (1998).

    Article  CAS  Google Scholar 

  8. Gray, W. R., Luque, A., Olivera, B. M., Barrett, J. & Cruz, L. J. Peptide toxins from Conus geographus venom. J. Biol. Chem. 256, 4734–4740 (1981).

    CAS  PubMed  Google Scholar 

  9. Hopkins, C. et al. A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J. Biol. Chem. 270, 22361–22367 (1995).

    Article  CAS  Google Scholar 

  10. Shon, K. J. et al. A noncompetitive peptide inhibitor of the nicotinic acetylcholine receptor from Conus purpurascens venom. Biochemistry 36, 9581–9587 (1997).

    Article  CAS  Google Scholar 

  11. England, L. J. et al. Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 281, 575–578 (1998).

    Article  CAS  Google Scholar 

  12. Mena, E. E. et al. Conantokin-G: a novel peptide antagonist to the N-methyl-D-aspartic acid (NMDA) receptor. Neurosci. Lett. 118, 241–244 (1990).

    Article  CAS  Google Scholar 

  13. Cruz, L. J. et al. Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus striatus venoms. J. Biol. Chem. 262, 15821–15824 (1987).

    CAS  PubMed  Google Scholar 

  14. Craig, A. G. et al. Contulakin-G, an O-glycosylated invertebrate neurotensin. J. Biol. Chem. 274, 13752–13759 (1999).

    Article  CAS  Google Scholar 

  15. Adams, D. J., Alewood, P. F., Craik, D. J., Drinkwater, R. D. & Lewis, R. J. Conotoxins and their potential pharmaceutical applications. Drug Dev. Res. 46, 219–234 (1999).

    Article  CAS  Google Scholar 

  16. McGrath, J. C. Adrenergic and 'non-adrenergic' components in the contractile response of the vas deferens to a single indirect stimulus. J. Physiol. (Lond.) 283, 23–39 (1978).

    Article  CAS  Google Scholar 

  17. Sneddon, P. & Westfall, D. P. Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J. Physiol. (Lond.) 347, 561–580 (1984).

    Article  CAS  Google Scholar 

  18. Minneman, K. P., Fox, A. W. & Abel, P. W. Occupancy of α1-adrenergic receptors and contraction of rat vas deferens. Mol. Pharmacol. 23, 359–368 (1983).

    CAS  PubMed  Google Scholar 

  19. Kenakin, T. P. Pharmacologic Analysis of Drug–Receptor Interaction (Lippincott-Raven, Philadelphia, Pennsylvania, 1997).

    Google Scholar 

  20. Hwa, J., Graham, R. M. & Perez, D. M. Identification of critical determinants of α1-adrenergic receptor subtype selective agonist binding. J. Biol. Chem. 270, 23189–23195 (1995).

    Article  CAS  Google Scholar 

  21. Trendelenburg, U., Maxwell, R. A. & Pluchino, S. Methoxamine as a tool to assess the importance of intraneuronal uptake of l-norepinephrine in the cat's nictitating membrane. J. Pharmacol. Exp. Ther. 172, 91–99 (1970).

    CAS  PubMed  Google Scholar 

  22. Northover, B. J. A comparison of the electrophysiological actions of phentolamine with those of some other antiarrhythmic drugs on tissues isolated from the rat heart. Br. J. Pharmacol. 80, 85–93 (1983).

    Article  CAS  Google Scholar 

  23. Pérez, O., Valenzuela, C., Delpón, E. & Tamargo, J. Class I and III antiarrhythmic actions of prazosin in guinea-pig papillary muscles. Br. J. Pharmacol. 111, 717–722 (1994).

    Article  Google Scholar 

  24. Przywara, D. A. & Dambach, G. E. Direct actions of cocaine on cardiac cellular electrical activity. Circ. Res. 65, 185–192 (1989).

    Article  CAS  Google Scholar 

  25. Cusack, B., Nelson, A. & Richelson, E. Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology (Berl.) 114, 559–565 (1994).

    Article  CAS  Google Scholar 

  26. McIntosh, J. M. et al. Isolation and characterization of a novel Conus peptide with apparent antinociceptive activity. J. Biol. Chem. 275, 32391–32397 (2000).

    Article  CAS  Google Scholar 

  27. Fürst, S. Transmitters involved in antinociception in the spinal cord. Brain Res. Bull. 48, 129–141 (1999).

    Article  Google Scholar 

  28. Hu, S. H. et al. The 1.1 Å resolution crystal structure of [Tyr15]-EpI, a novel α-conotoxin from Conus episcopatus, solved by direct methods. Biochemistry 37, 11425–11433 (1998).

    Article  CAS  Google Scholar 

  29. Hu, S. H. et al. The 1.1 Å crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure 4, 417–423 (1996).

    Article  CAS  Google Scholar 

  30. Hu, S. H., Gehrmann, J., Alewood, P. F., Craik, D. J. & Martin, J. L. Crystal structure at 1.1 Å resolution of α-conotoxin PnIB: comparison with α-conotoxins PnIA and GI. Biochemistry 36, 11323–11330 (1997).

    Article  CAS  Google Scholar 

  31. Balaji, R. A. et al. λ-Conotoxins, a new family of conotoxins with unique disulfide pattern and protein folding. Isolation and characterization from the venom of Conus marmoreus. J. Biol. Chem. 275, 39516–39522 (2000).

    Article  CAS  Google Scholar 

  32. Massot, O. et al. 5-hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotonergic activity via its specific interaction with 5-hydroxytryptamine1B/1D receptors. Mol. Pharmacol. 50, 752–762 (1996).

    CAS  PubMed  Google Scholar 

  33. Olivera, B. M. & Cruz, L. J. Conotoxins, in retrospect. Toxicon 39, 7–14 (2001).

    Article  CAS  Google Scholar 

  34. Loughnan, M. et al. α-Conotoxin EpI, a novel sulfated peptide from Conus episcopatus that selectively targets neuronal nicotinic acetylcholine receptors. J. Biol. Chem. 273, 15667–15674 (1998).

    Article  CAS  Google Scholar 

  35. Brüss, M., Pörzgen, P., Bryan-Lluka, L. J. & Bönisch, H. The rat norepinephrine transporter: molecular cloning from PC12 cells and functional expression. Brain Res. Mol. 52, 257–262 (1997).

    Article  Google Scholar 

  36. Percy, E. et al. Catechol-O-methyltransferase activity in CHO cells expressing norepinephrine transporter. Br. J. Pharmacol. 128, 774–780 (1999).

    Article  CAS  Google Scholar 

  37. Nielsen, K. J. et al. Effects of chirality at Tyr13 on the structure–activity relationships of ω-conotoxins from Conus magus. Biochemistry 38, 6741–6751 (1999).

    Article  CAS  Google Scholar 

  38. Fainzilber, M. et al. New mollusc-specific α-conotoxins block Aplysia neuronal acetylcholine receptors. Biochemistry 33, 9523–9529 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Graham (Sydney) and D. Kaye (Melbourne) for assistance and advice and for providing the α1B-adrenoceptor (R.G.) and human NET (D.K.) clones. L. Bryan-Lluka (Brisbane) provided the rat NET clone. A. Jones, N. Daly, K. Nielsen and T. Bond (I.M.B.) provided assistance. This work was supported by grants from AusIndustry and the National Health and Medical Research Council, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharpe, I., Gehrmann, J., Loughnan, M. et al. Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4, 902–907 (2001). https://doi.org/10.1038/nn0901-902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0901-902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing