Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel

Abstract

MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homolo-gous channels in mammals and plants are expected to function similarly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino acid sequence and predicted topology of MVP.
Figure 2: MVP rescues yeast and bacterial cells and yields potassium currents.
Figure 3: MVP currents: activation and selectivity.
Figure 4: Single MVP channels are opened by hyperpolarization.
Figure 5: The MVP S4 is upright in the membrane.
Figure 6: Modification of sentinel cysteines in S4 is side and voltage-dependent.
Figure 7: Modification of sentinel cysteines in S4 is state-dependent.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Woese, C.R., Kandler, O. & Wheelis, M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  Google Scholar 

  2. Bult, C.J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  Google Scholar 

  3. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  4. Jiang, Y.X. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  5. Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001).

    Article  CAS  Google Scholar 

  6. Hodgkin, A.L. & Huxely, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  7. Sigworth, F.J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994).

    Article  CAS  Google Scholar 

  8. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Shaker potassium channel gating. I: Transitions near the open state. J. Gen. Physiol. 103, 249–278 (1994).

    Article  CAS  Google Scholar 

  9. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995).

    Article  CAS  Google Scholar 

  10. Yang, N., George, A.L. Jr. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  Google Scholar 

  11. Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  Google Scholar 

  12. Larsson, H.P., Baker, O.S., Dhillon, D.S. & Isacoff, E.Y. Transmembrane movement of the Shaker K+ channel S4. Neuron 16, 387–397 (1996).

    Article  CAS  Google Scholar 

  13. Starace, D.M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997).

    Article  CAS  Google Scholar 

  14. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  Google Scholar 

  15. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000).

    Article  CAS  Google Scholar 

  16. Starace, D.M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001).

    Article  CAS  Google Scholar 

  17. Santoro, B. et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93, 717–729 (1998).

    Article  CAS  Google Scholar 

  18. Ludwig, A. et al. Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 18, 2323–2329 (1999).

    Article  CAS  Google Scholar 

  19. Seifert, R. et al. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc. Natl. Acad. Sci. USA 96, 9391–9396 (1999).

    Article  CAS  Google Scholar 

  20. Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J. & Gaber, R.F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 3736–3740 (1992).

    Article  CAS  Google Scholar 

  21. Zei, P.C. & Aldrich, R.W. Voltage-dependent gating of single wild-type and S4 mutant KAT1 inward rectifier potassium channels. J. Gen. Physiol. 112, 679–713 (1998).

    Article  CAS  Google Scholar 

  22. Chen, J., Mitcheson, J.S., Lin, M. & Sanguinetti, M.C. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J. Biol. Chem. 275, 36465–36471 (2000).

    Article  CAS  Google Scholar 

  23. Shin, K.S., Rothberg, B.S. & Yellen, G. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate. J. Gen. Physiol. 117, 91–101 (2001).

    Article  CAS  Google Scholar 

  24. Rothberg, B.S., Shin, K.S., Phale, P.S. & Yellen, G. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. J. Gen. Physiol. 119, 83–91 (2002).

    Article  CAS  Google Scholar 

  25. Mannikko, R., Elinder, F. & Larsson, H.P. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419, 837–841 (2002).

    Article  CAS  Google Scholar 

  26. Schlosser, A., Meldorf, M., Stumpe, S., Bakker, E.P. & Epstein, W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 177, 1908–1910 (1995).

    Article  CAS  Google Scholar 

  27. Ahmed, A. et al. A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99, 283–291 (1999).

    Article  CAS  Google Scholar 

  28. Sesti, F., Shih, T.M., Nikolaeva, N. & Goldstein, S.A. Immunity to K1 killer toxin: internal TOK1 blockade. Cell 105, 637–644 (2001).

    Article  CAS  Google Scholar 

  29. Ketchum, K.A., Joiner, W.J., Sellers, A.J., Kaczmarek, L.K. & Goldstein, S.A.N. A new family of outwardly-rectifying potassium channel proteins with two pore domains in tandem. Nature 376, 690–695 (1995).

    Article  CAS  Google Scholar 

  30. Saimi, Y., Loukin, S.H., Zhou, X.L., Martinac, B. & Kung, C. Ion channels in microbes. Methods Enzymol. 294, 507–524 (1999).

    Article  CAS  Google Scholar 

  31. Zerangue, N., Schwappach, B., Jan, Y.N. & Jan, L.Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999).

    Article  CAS  Google Scholar 

  32. Chen, G.Q., Cui, C., Mayer, M.L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  CAS  Google Scholar 

  33. Spector, P.S., Curran, M.E., Zou, A., Keating, M.T. & Sanguinetti, M.C. Fast inactivation causes rectification of the IKr channel. J. Gen. Physiol. 107, 611–619 (1996).

    Article  CAS  Google Scholar 

  34. Smith, P.L., Baukrowitz, T. & Yellen, G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379, 833–836 (1996).

    Article  CAS  Google Scholar 

  35. Chen, S., Wang, J. & Siegelbaum, S.A. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J. Gen. Physiol. 117, 491–504 (2001).

    Article  CAS  Google Scholar 

  36. Kaupp, U.B. & Seifert, R. Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63, 235–257 (2001).

    Article  CAS  Google Scholar 

  37. DiFrancesco, D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324, 470–473 (1986).

    Article  CAS  Google Scholar 

  38. Hoshi, T. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physiol. 105, 309–328 (1995).

    Article  CAS  Google Scholar 

  39. Hoth, S. Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J. Biol. Chem. 274, 11599–11603 (1999).

    Article  CAS  Google Scholar 

  40. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  CAS  Google Scholar 

  41. Zheng, J. & Sigworth, F.J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    Article  CAS  Google Scholar 

  42. Kiss, L. & Korn, S.J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys. J. 74, 1840–1849 (1998).

    Article  CAS  Google Scholar 

  43. Loots, E. & Isacoff, E.Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J. Gen. Physiol. 112, 377–389 (1998).

    Article  CAS  Google Scholar 

  44. Kiss, L., LoTurco, J. & Korn, S.J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76, 253–263 (1999).

    Article  CAS  Google Scholar 

  45. Liu, J. & Siegelbaum, S.A. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels. Neuron 28, 899–909 (2000).

    Article  CAS  Google Scholar 

  46. Flynn, G.E. & Zagotta, W.N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).

    Article  CAS  Google Scholar 

  47. Zilberberg, N., Ilan, N. & Goldstein, S.A. KCNKO: opening and closing the 2-P-domain potassium leak channel entails 'C-type' gating of the outer pore. Neuron 32, 635–648 (2001).

    Article  CAS  Google Scholar 

  48. Ko, C.H. & Gaber, R.F. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 4266–4273 (1991).

    Article  CAS  Google Scholar 

  49. Goldstein, S.A.N., Price, L.A., Rosenthal, D.N. & Pausch, M.H. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 13256–13261 (1996).

    Article  CAS  Google Scholar 

  50. Gustin, M.C., Zhou, X.L., Martinac, B. & Kung, C. A mechanosensitive ion channel in the yeast plasma membrane. Science 242, 762–765 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to S.A.N.G. from the National Institutes of Health. S.A.N.G. is a Doris Duke Charitable Foundation Distinguished Clinical Scholar Award recipient. We thank R. Goldstein for technical and lexical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A.N. Goldstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sesti, F., Rajan, S., Gonzalez-Colaso, R. et al. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel. Nat Neurosci 6, 353–361 (2003). https://doi.org/10.1038/nn1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing