Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain

Abstract

The subjective feeling of cold is mediated by the activation of TRPM8 channels in thermoreceptive neurons by cold or by cooling agents such as menthol. Here, we demonstrate a central role for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the activation of recombinant TRPM8 channels by both cold and menthol. Moreover, we show that Ca2+ influx through these channels activates a Ca2+-sensitive phospholipase C and that the subsequent depletion of PI(4,5)P2 limits channel activity, serving as a unique mechanism for desensitization of TRPM8 channels. Finally, we find that mutation of conserved positive residues in the highly conserved proximal C-terminal TRP domain of TRPM8 and two other family members, TRPM5 and TRPV5, reduces the sensitivity of the channels for PI(4,5)P2 and increases inhibition by PI(4,5)P2 depletion. These data suggest that the TRP domain of these channels may serve as a PI(4,5)P2-interacting site and that regulation by PI(4,5)P2 is a common feature of members of the TRP channel family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation by PI(4,5)P2 of TRPM8 channels expressed in Xenopus oocytes.
Figure 2: Cold and menthol increase the apparent affinity of TRPM8 channels for PI(4,5)P2.
Figure 3: Effect of PI(4,5)P2 depletion in the presence and absence of menthol or icilin.
Figure 4: PI(4,5)P2 is necessary and sufficient to activate TRPM8 channels.
Figure 5: Putative PI(4,5)P2-interacting residues in the TRP domain.
Figure 6: The effect of the mutation of the equivalent residue to R1008 in TRPV5 and TRPM5 channels.
Figure 7: Calcium-dependent desensitization is mediated by PI(4,5)P2 hydrolysis in mammalian cells.
Figure 8: Calcium-induced inhibition is mediated by PI(4,5)P2 hydrolysis in Xenopus oocytes.

Similar content being viewed by others

References

  1. Reid, G. & Flonta, M.L. Physiology. Cold current in thermoreceptive neurons. Nature 413, 480 (2001).

    Article  CAS  Google Scholar 

  2. McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  Google Scholar 

  3. Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  Google Scholar 

  4. Reid, G., Babes, A. & Pluteanu, F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J. Physiol. (Lond.) 545, 595–614 (2002).

    Article  CAS  Google Scholar 

  5. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    Article  CAS  Google Scholar 

  6. Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl. Acad. Sci. USA 101, 15494–15499 (2004).

    Article  CAS  Google Scholar 

  7. Clapham, D.E., Runnels, L.W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  8. Montell, C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci. STKE 2001, RE1 (2001).

    CAS  PubMed  Google Scholar 

  9. Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell 108, 595–598 (2002).

    Article  CAS  Google Scholar 

  10. Minke, B. & Cook, B. TRP channel proteins and signal transduction. Physiol. Rev. 82, 429–472 (2002).

    Article  CAS  Google Scholar 

  11. Clapham, D.E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  12. Hilgemann, D.W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE 2001, RE19 (2001).

    CAS  PubMed  Google Scholar 

  13. Huang, C.L., Feng, S. & Hilgemann, D.W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  14. Sui, J.L., Petit Jacques, J. & Logothetis, D.E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. USA 95, 1307–1312 (1998).

    Article  CAS  Google Scholar 

  15. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D.E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell Biol. 1, 183–188 (1999).

    Article  CAS  Google Scholar 

  16. Du, X. et al. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J. Biol. Chem. 279, 37271–37281 (2004).

    Article  CAS  Google Scholar 

  17. Hardie, R.C. Regulation of TRP channels via lipid second messengers. Annu. Rev. Physiol. 65, 735–759 (2003).

    Article  CAS  Google Scholar 

  18. Runnels, L.W., Yue, L. & Clapham, D.E. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat. Cell Biol. 4, 329–336 (2002).

    Article  CAS  Google Scholar 

  19. Liu, D. & Liman, E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. USA 100, 15160–15165 (2003).

    Article  CAS  Google Scholar 

  20. Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).

    Article  CAS  Google Scholar 

  21. Estacion, M., Sinkins, W.G. & Schilling, W.P. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol. (Lond.) 530, 1–19 (2001).

    Article  CAS  Google Scholar 

  22. Chuang, H.H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2 mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  Google Scholar 

  23. Lopes, C.M.B., Zhang, H., Rohács, T., Jin, T. & Logothetis, D.E. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34, 933–944 (2002).

    Article  CAS  Google Scholar 

  24. Zhang, H. et al. PIP2 activates KCNQ channels and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003).

    Article  CAS  Google Scholar 

  25. Rohács, T., Chen, J., Prestwich, G.D. & Logothetis, D.E. Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. J. Biol. Chem. 274, 36065–36072 (1999).

    Article  Google Scholar 

  26. Zeng, W.Z., Liou, H.H., Krishna, U.M., Falck, J.R. & Huang, C.L. Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am. J. Physiol. Renal Physiol. 282, F826–F834 (2002).

    Article  CAS  Google Scholar 

  27. Rohács, T. et al. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc. Natl. Acad. Sci. USA 100, 745–750 (2003).

    Article  Google Scholar 

  28. Fruman, D.A., Meyers, R.E. & Cantley, L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    Article  CAS  Google Scholar 

  29. Kobrinsky, E., Mirshahi, T., Zhang, H., Jin, T. & Logothetis, D.E. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+ current desensitization. Nat. Cell Biol. 2, 507–514 (2000).

    Article  CAS  Google Scholar 

  30. Prescott, E.D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003).

    Article  CAS  Google Scholar 

  31. Cho, H., Nam, G.B., Lee, S.H., Earm, Y.E. & Ho, W.K. Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in α1-adrenergic pathway via the modulation of acetylcholine-activated K+ channels in mouse atrial myocytes. J. Biol. Chem. 276, 159–164 (2001).

    Article  CAS  Google Scholar 

  32. Valius, M., Bazenet, C. & Kazlauskas, A. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor-β subunit and are required for binding of phospholipase Cγ and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13, 133–143 (1993).

    Article  CAS  Google Scholar 

  33. Ridefelt, P. & Siegbahn, A. Tyr1009 and Tyr1021 in the platelet-derived growth factor β-receptor mediate agonist triggered calcium signalling. Anticancer Res. 18, 1819–1825 (1998).

    CAS  PubMed  Google Scholar 

  34. De Smedt, F., Verjans, B., Mailleux, P. & Erneux, C. Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase. High levels of mRNA in cerebellar Purkinje cells. FEBS Lett. 347, 69–72 (1994).

    Article  CAS  Google Scholar 

  35. Luzzi, V., Sims, C.E., Soughayer, J.S. & Allbritton, N.L. The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J. Biol. Chem. 273, 28657–28662 (1998).

    Article  CAS  Google Scholar 

  36. Czirják, G., Petheő, G.L., Spät, A. & Enyedi, P. Inhibition of TASK-1 potassium channel by phospholipase C. Am. J. Physiol. Cell Physiol. 281, C700–C708 (2001).

    Article  Google Scholar 

  37. Nakanishi, S., Catt, K.J. & Balla, T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc. Natl. Acad. Sci. USA 92, 5317–5321 (1995).

    Article  CAS  Google Scholar 

  38. Chuang, H.H., Neuhausser, W.M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004).

    Article  CAS  Google Scholar 

  39. Garcia-Sanz, N. et al. Identification of a tetramerization domain in the C terminus of the vanilloid receptor. J. Neurosci. 24, 5307–5314 (2004).

    Article  CAS  Google Scholar 

  40. Baukrowitz, T. et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 1141–1144 (1998).

    Article  CAS  Google Scholar 

  41. Shyng, S.L., Cukras, C.A., Harwood, J. & Nichols, C.G. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J. Gen. Physiol. 116, 599–608 (2000).

    Article  CAS  Google Scholar 

  42. Dodier, Y. et al. Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279, 6853–6862 (2004).

    Article  CAS  Google Scholar 

  43. Schafer, K., Braun, H.A. & Hensel, H. Static and dynamic activity of cold receptors at various calcium levels. J. Neurophysiol. 47, 1017–1028 (1982).

    Article  CAS  Google Scholar 

  44. Shyng, S.L. et al. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase. Proc. Natl. Acad. Sci. USA 97, 937–941 (2000).

    Article  CAS  Google Scholar 

  45. van der Wal, J., Habets, R., Várnai, P., Balla, T. & Jalink, K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J. Biol. Chem. 276, 15337–15344 (2001).

    Article  CAS  Google Scholar 

  46. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. & Iino, M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284, 1527–1530 (1999).

    Article  CAS  Google Scholar 

  47. Rebecchi, M.J. & Pentyala, S.N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335 (2000).

    Article  CAS  Google Scholar 

  48. Allen, V., Swigart, P., Cheung, R., Cockcroft, S. & Katan, M. Regulation of inositol lipid-specific phospholipase cδ by changes in Ca2+ ion concentrations. Biochem. J. 327, 545–552 (1997).

    Article  CAS  Google Scholar 

  49. Czech, M.P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol. 65, 791–815 (2003).

    Article  CAS  Google Scholar 

  50. Wenk, M.R. & De Camilli, P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl. Acad. Sci. USA 101, 8262–8269 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Findeis and A. Pappas for preparing oocytes. The cDNA clone for the TRPM8 channel was kindly provided by D. Julius (University of California, San Francisco); the PDGF receptor clone by A. Kazlauskas (Harvard Medical School, Boston, Massachusetts); the CFP- and YFP-tagged PH domain constructs by T. Balla (National Institutes of Health, Bethesda, Maryland); the type I IP3 5-phosphatase by C. Erneux (IRIBHN, Brussels, Belgium); the clones for PLCδ1 and type I phosphatidylinositol-4-phosphate 5-kinase (PIP5K) by S. Scarlata (State University of New York at Stony Brook) and S.-L. Syng (Oregon Health & Science University, Portland); the clone for TRPV5 (CaT2) by L. Parent (University of Montreal); and the clone for TRPM5 by R. Margolskee (Mount Sinai School of Medicine, New York). This work was supported by NIH grant HL59949 to D.L. T.R. and C.M.B.L. were supported by Scientist Development Grants from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Rohács.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PI(4,5)P2 induces a shift in the voltage dependence of TRPM8 channels. (PDF 1480 kb)

Supplementary Fig. 2

Phospholipase C is required for PDGFinhibition of TrpM8 mutants. (PDF 1856 kb)

Supplementary Fig. 3

Inhibition of the endogenous Ca2+ activated Cl current in Cl-free media. (PDF 670 kb)

Supplementary Fig. 4

Multiple sequence alignment of the Trp-domain of the mammalian Trp superfamily. (PDF 1204 kb)

Supplementary Fig. 5

Intracellular calcium concentration measurements. (PDF 1617 kb)

Supplementary Fig. 6

Model of the activation and desensitization of TRPM8 channels. (PDF 642 kb)

Supplementary Methods (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohács, T., Lopes, C., Michailidis, I. et al. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8, 626–634 (2005). https://doi.org/10.1038/nn1451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing